Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass team develops novel self-assembly processes for nanotech applications

10.01.2003


Details published in Jan. 10 issue of the journal Science

Researchers at the University of Massachusetts Amherst have developed a series of novel techniques in nanotechnology that hold promise for applications ranging from highly targeted pharmaceutical therapies, to development of nutrition-enhanced foods known as "nutraceuticals," to nanoscopic sensors that might one day advance medical imaging and diagnostics. The research, published in the Jan. 10 issue of Science, was funded by the U.S. Department of Energy and the National Science Foundation.

The team included faculty members Thomas Russell and Todd Emrick of the department of polymer science and engineering, and Anthony Dinsmore of the department of physics, and graduate students Yao Lin and Habib Skaff, both of polymer science and engineering. "Our findings open new avenues to revolutionize technology by the controlled fabrication of nanoscopic materials having unique optical, magnetic and electronic properties," said Russell.



The study details three major findings:

- A novel method to create robust capsules from nanometer-sized particles;
- A new technique to make nanoscopic particles water-soluble and
- Functionalizing regions of the capsules with tailored properties, such as luminescence.

Emrick’s research explores the behavior of nanoparticles to which ligands – organic molecules and polymers – have been attached. Russell is an expert in the surface and interfacial properties of polymers, and polymer-based nanostructures. Dinsmore specializes in colloidal assemblies and interface physics. "This is a productive collaboration in that we really have all the bases covered in terms of synthesis, understanding of interfacial activity and mediation, and the physics issues including surface tension and particle interactions," Emrick said.

The study details a new method for assembling nanoparticles into robust, three-dimensional structures by encapsulating and stabilizing water droplets. Nanoparticles suspended in oil will self-assemble around a droplet of water, fully coating it with a shell. Although scientists have long known that particles tend to assemble at fluid interfaces, "the idea of using liquid interfaces as scaffolds is exciting and tremendously useful since researchers can tailor or modify the nanoparticles from both sides of the interface," explained Dinsmore. "We have much more surface area to work with for adding or removing specific particles."

"Nanoparticles have exciting properties due to their small size, and they can be prepared in various shapes and sizes. What’s really key is that you attach ligands that extend from the nanoparticles like hairs, in order to preserve the nanoscopic integrity of the particles and prevent them from clustering," Emrick said. "Changing the nature of these organic ligands can really modify the behavior of the particles. You can endow the nanoparticles, and thus the capsules that they form upon interfacial assembly, with a wide range of properties based on which ligands are attached." The effect of the ligands on the interactions of nanoparticles with the surrounding environment is crucial in medical applications. "These organic molecules will dictate the solubility, miscibility, and charge transport properties of the particles," Emrick said.

UMass researchers also developed a method to take these nanoparticles, which are oil-soluble, and make them water-soluble, simply by shining light on them. "Developing nanoparticles that are water-soluble has significant implications for medicine in the biosensors area," Emrick said. "Using luminescent material, as we did, could lead to advances in very sophisticated medical-imaging techniques as the fluorescent nature of these particles allows them to be viewed and tracked over time."

Finally, the UMass team discovered that when nanoparticles of different sizes compete for assembly at the interface, the bigger ones win, and segregate or cluster into patches on the droplet surface. "This opens a range of possibilities for developing nanoscopic capsules that have certain properties in specific areas," said Dinsmore. "You could build in an area with permeability, magnetism, or conductivity, so that one area would be functionally distinct."

Elizabeth Luciano | EurekAlert!
Further information:
http://www.umass.edu/

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>