Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass team develops novel self-assembly processes for nanotech applications

10.01.2003


Details published in Jan. 10 issue of the journal Science

Researchers at the University of Massachusetts Amherst have developed a series of novel techniques in nanotechnology that hold promise for applications ranging from highly targeted pharmaceutical therapies, to development of nutrition-enhanced foods known as "nutraceuticals," to nanoscopic sensors that might one day advance medical imaging and diagnostics. The research, published in the Jan. 10 issue of Science, was funded by the U.S. Department of Energy and the National Science Foundation.

The team included faculty members Thomas Russell and Todd Emrick of the department of polymer science and engineering, and Anthony Dinsmore of the department of physics, and graduate students Yao Lin and Habib Skaff, both of polymer science and engineering. "Our findings open new avenues to revolutionize technology by the controlled fabrication of nanoscopic materials having unique optical, magnetic and electronic properties," said Russell.



The study details three major findings:

- A novel method to create robust capsules from nanometer-sized particles;
- A new technique to make nanoscopic particles water-soluble and
- Functionalizing regions of the capsules with tailored properties, such as luminescence.

Emrick’s research explores the behavior of nanoparticles to which ligands – organic molecules and polymers – have been attached. Russell is an expert in the surface and interfacial properties of polymers, and polymer-based nanostructures. Dinsmore specializes in colloidal assemblies and interface physics. "This is a productive collaboration in that we really have all the bases covered in terms of synthesis, understanding of interfacial activity and mediation, and the physics issues including surface tension and particle interactions," Emrick said.

The study details a new method for assembling nanoparticles into robust, three-dimensional structures by encapsulating and stabilizing water droplets. Nanoparticles suspended in oil will self-assemble around a droplet of water, fully coating it with a shell. Although scientists have long known that particles tend to assemble at fluid interfaces, "the idea of using liquid interfaces as scaffolds is exciting and tremendously useful since researchers can tailor or modify the nanoparticles from both sides of the interface," explained Dinsmore. "We have much more surface area to work with for adding or removing specific particles."

"Nanoparticles have exciting properties due to their small size, and they can be prepared in various shapes and sizes. What’s really key is that you attach ligands that extend from the nanoparticles like hairs, in order to preserve the nanoscopic integrity of the particles and prevent them from clustering," Emrick said. "Changing the nature of these organic ligands can really modify the behavior of the particles. You can endow the nanoparticles, and thus the capsules that they form upon interfacial assembly, with a wide range of properties based on which ligands are attached." The effect of the ligands on the interactions of nanoparticles with the surrounding environment is crucial in medical applications. "These organic molecules will dictate the solubility, miscibility, and charge transport properties of the particles," Emrick said.

UMass researchers also developed a method to take these nanoparticles, which are oil-soluble, and make them water-soluble, simply by shining light on them. "Developing nanoparticles that are water-soluble has significant implications for medicine in the biosensors area," Emrick said. "Using luminescent material, as we did, could lead to advances in very sophisticated medical-imaging techniques as the fluorescent nature of these particles allows them to be viewed and tracked over time."

Finally, the UMass team discovered that when nanoparticles of different sizes compete for assembly at the interface, the bigger ones win, and segregate or cluster into patches on the droplet surface. "This opens a range of possibilities for developing nanoscopic capsules that have certain properties in specific areas," said Dinsmore. "You could build in an area with permeability, magnetism, or conductivity, so that one area would be functionally distinct."

Elizabeth Luciano | EurekAlert!
Further information:
http://www.umass.edu/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>