Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot Space Cowboys

06.12.2002


A unique University of Southern California design for self-organizing robots controlled by "hormonal" software is moving toward space.


Schematic diagram of architecture of self-assembling solar power satellite. Seeker "whip" units, (yellow) powered at both ends, listen for signals from subassemblies, find them, and pull them together.



At the Robosphere 2002 conference held at the NASA Ames Research Center in Silicon Valley November 14-15, Wei-Min Shen of the USC School of Engineering’s Information Sciences Institute (ISI) presented an overview of an audacious project to have pieces of the proposed half-mile-long Space Solar Power System satellite put themselves together--self-assemble--without the help of astronauts.

Shen and co-principal investigator Peter Will are doing more than proposing. They are already testing the hardware and software the system would use in the ISI Polymorphic Robotics Laboratory, of which Shen is director.


Over the past two and a half years, Shen and Will have developed modular individual robot units, each with a computer chip programmed with what the researchers call "hormonal" software. Shen said that such software allows "bifurcation, unification, and behavior shifting" by the modules.

The units can unite themselves into larger wholes, or divide themselves up into smaller ones. "If a six-unit snake splits in half," explained Shen, "you get two smaller, three-unit snakes that function as the larger one did."

Separated units communicate using infrared signals, maneuvering their coupling units into a lock in cooperative, coordinated fashion.

"Behavior shifting" means that the individual units--which are identical--exhibit different behavior according to their position in the assembly.

Will and Shen’s CONRO project created working units that use the software. Shen and Will’s new SOLAR space station proposal, funded by a consortium including NASA, the NSF, and the Electric Power Research Institute (EPRI), proposes to use this architecture on a gigantic scale.

They propose a self-assembling space station consisting of two species of robotic devices, both controlled by the same software.

One species will be the parts that will actually make up the station: solar power units, including necessary utility conduits. Each of these will have a microprocessor running hormonal software. Sets of contiguious units will, once released into space, arrange themselves into the desired configuration.

When these subassemblies are ready, they will signal and alert the second species of robot, the "free-flying intelligent fiber rope matchmaker units," or whips.

Whips will consist of two modular robot units connected by a long connector line that can shorten or lengthen at the direction of the software. They will also have solar-powered rockets, enabling them to move in space, GPS sensors to find their position, communicators, and connectors.

When a completed subassembly signals, a whip will maneuver toward it, lock on, wait for a call from a second assembly, tow the first over, pull them together by winching in the fiber rope, so that the two can attach to each other.

Once mating accomplished, the whip unit would then fly off to find other parts to assemble.

The design, said Will, combines the advantages of free-flying and tethered systems.

In the laboratory, Shen and Will have modeled the concept in two-dimensional form, working with an air-hockey table on which prototype individual units will learn to find each other by sensing each other’s infrared signals, maneuver next to each other using built-in fans, lock on, and pull units together using a motorized cable.

"This will give both the hardware and software a realistic test," said Shen. Researcher Harshit Suri has built a first prototype unit.

Shen and Will won the grant from the NSF/NSA/EPRI consortium that funds their work in a rigorous competition in which 76 proposals were received and only four were funded.

Shen, Will, and ISI collaborator Behnam Salemi published a detailed paper, "Hormone-Inspired Adaptive Communication and Distributed Control for CONRO Self-Reconfigurable Robots," in IEEE Transactions on Robotics and Automation. in October, 2002. They have recently applied for a U.S. patent on the technology.

Working with Shen and Will in the field of space assembly are two faculty members from the USC School of Engineering: Berokh Khoshnevis of the department of industrial and systems engineering; and George Bekey, of the department of computer science. Along with Suri and Salemi, Yusuf Akteskan is working on the space system project.

The ISI Polymorphic Robotics Laboratory is one of six laboratories associated with the USC School of Engineering’s Center for Robotics and Embedded Systems.


Contact: Wei-Min Shen, shen@isi.edu , (310) 448-8710 .

Eric Mankin | EurekAlert!
Further information:
http://www.isi.edu/robots/solar/index.html
http://www.isi.edu/robots/
http://robosphere.arc.nasa.gov/Workshop.html

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>