Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot Space Cowboys

06.12.2002


A unique University of Southern California design for self-organizing robots controlled by "hormonal" software is moving toward space.


Schematic diagram of architecture of self-assembling solar power satellite. Seeker "whip" units, (yellow) powered at both ends, listen for signals from subassemblies, find them, and pull them together.



At the Robosphere 2002 conference held at the NASA Ames Research Center in Silicon Valley November 14-15, Wei-Min Shen of the USC School of Engineering’s Information Sciences Institute (ISI) presented an overview of an audacious project to have pieces of the proposed half-mile-long Space Solar Power System satellite put themselves together--self-assemble--without the help of astronauts.

Shen and co-principal investigator Peter Will are doing more than proposing. They are already testing the hardware and software the system would use in the ISI Polymorphic Robotics Laboratory, of which Shen is director.


Over the past two and a half years, Shen and Will have developed modular individual robot units, each with a computer chip programmed with what the researchers call "hormonal" software. Shen said that such software allows "bifurcation, unification, and behavior shifting" by the modules.

The units can unite themselves into larger wholes, or divide themselves up into smaller ones. "If a six-unit snake splits in half," explained Shen, "you get two smaller, three-unit snakes that function as the larger one did."

Separated units communicate using infrared signals, maneuvering their coupling units into a lock in cooperative, coordinated fashion.

"Behavior shifting" means that the individual units--which are identical--exhibit different behavior according to their position in the assembly.

Will and Shen’s CONRO project created working units that use the software. Shen and Will’s new SOLAR space station proposal, funded by a consortium including NASA, the NSF, and the Electric Power Research Institute (EPRI), proposes to use this architecture on a gigantic scale.

They propose a self-assembling space station consisting of two species of robotic devices, both controlled by the same software.

One species will be the parts that will actually make up the station: solar power units, including necessary utility conduits. Each of these will have a microprocessor running hormonal software. Sets of contiguious units will, once released into space, arrange themselves into the desired configuration.

When these subassemblies are ready, they will signal and alert the second species of robot, the "free-flying intelligent fiber rope matchmaker units," or whips.

Whips will consist of two modular robot units connected by a long connector line that can shorten or lengthen at the direction of the software. They will also have solar-powered rockets, enabling them to move in space, GPS sensors to find their position, communicators, and connectors.

When a completed subassembly signals, a whip will maneuver toward it, lock on, wait for a call from a second assembly, tow the first over, pull them together by winching in the fiber rope, so that the two can attach to each other.

Once mating accomplished, the whip unit would then fly off to find other parts to assemble.

The design, said Will, combines the advantages of free-flying and tethered systems.

In the laboratory, Shen and Will have modeled the concept in two-dimensional form, working with an air-hockey table on which prototype individual units will learn to find each other by sensing each other’s infrared signals, maneuver next to each other using built-in fans, lock on, and pull units together using a motorized cable.

"This will give both the hardware and software a realistic test," said Shen. Researcher Harshit Suri has built a first prototype unit.

Shen and Will won the grant from the NSF/NSA/EPRI consortium that funds their work in a rigorous competition in which 76 proposals were received and only four were funded.

Shen, Will, and ISI collaborator Behnam Salemi published a detailed paper, "Hormone-Inspired Adaptive Communication and Distributed Control for CONRO Self-Reconfigurable Robots," in IEEE Transactions on Robotics and Automation. in October, 2002. They have recently applied for a U.S. patent on the technology.

Working with Shen and Will in the field of space assembly are two faculty members from the USC School of Engineering: Berokh Khoshnevis of the department of industrial and systems engineering; and George Bekey, of the department of computer science. Along with Suri and Salemi, Yusuf Akteskan is working on the space system project.

The ISI Polymorphic Robotics Laboratory is one of six laboratories associated with the USC School of Engineering’s Center for Robotics and Embedded Systems.


Contact: Wei-Min Shen, shen@isi.edu , (310) 448-8710 .

Eric Mankin | EurekAlert!
Further information:
http://www.isi.edu/robots/solar/index.html
http://www.isi.edu/robots/
http://robosphere.arc.nasa.gov/Workshop.html

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>