Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot Space Cowboys

06.12.2002


A unique University of Southern California design for self-organizing robots controlled by "hormonal" software is moving toward space.


Schematic diagram of architecture of self-assembling solar power satellite. Seeker "whip" units, (yellow) powered at both ends, listen for signals from subassemblies, find them, and pull them together.



At the Robosphere 2002 conference held at the NASA Ames Research Center in Silicon Valley November 14-15, Wei-Min Shen of the USC School of Engineering’s Information Sciences Institute (ISI) presented an overview of an audacious project to have pieces of the proposed half-mile-long Space Solar Power System satellite put themselves together--self-assemble--without the help of astronauts.

Shen and co-principal investigator Peter Will are doing more than proposing. They are already testing the hardware and software the system would use in the ISI Polymorphic Robotics Laboratory, of which Shen is director.


Over the past two and a half years, Shen and Will have developed modular individual robot units, each with a computer chip programmed with what the researchers call "hormonal" software. Shen said that such software allows "bifurcation, unification, and behavior shifting" by the modules.

The units can unite themselves into larger wholes, or divide themselves up into smaller ones. "If a six-unit snake splits in half," explained Shen, "you get two smaller, three-unit snakes that function as the larger one did."

Separated units communicate using infrared signals, maneuvering their coupling units into a lock in cooperative, coordinated fashion.

"Behavior shifting" means that the individual units--which are identical--exhibit different behavior according to their position in the assembly.

Will and Shen’s CONRO project created working units that use the software. Shen and Will’s new SOLAR space station proposal, funded by a consortium including NASA, the NSF, and the Electric Power Research Institute (EPRI), proposes to use this architecture on a gigantic scale.

They propose a self-assembling space station consisting of two species of robotic devices, both controlled by the same software.

One species will be the parts that will actually make up the station: solar power units, including necessary utility conduits. Each of these will have a microprocessor running hormonal software. Sets of contiguious units will, once released into space, arrange themselves into the desired configuration.

When these subassemblies are ready, they will signal and alert the second species of robot, the "free-flying intelligent fiber rope matchmaker units," or whips.

Whips will consist of two modular robot units connected by a long connector line that can shorten or lengthen at the direction of the software. They will also have solar-powered rockets, enabling them to move in space, GPS sensors to find their position, communicators, and connectors.

When a completed subassembly signals, a whip will maneuver toward it, lock on, wait for a call from a second assembly, tow the first over, pull them together by winching in the fiber rope, so that the two can attach to each other.

Once mating accomplished, the whip unit would then fly off to find other parts to assemble.

The design, said Will, combines the advantages of free-flying and tethered systems.

In the laboratory, Shen and Will have modeled the concept in two-dimensional form, working with an air-hockey table on which prototype individual units will learn to find each other by sensing each other’s infrared signals, maneuver next to each other using built-in fans, lock on, and pull units together using a motorized cable.

"This will give both the hardware and software a realistic test," said Shen. Researcher Harshit Suri has built a first prototype unit.

Shen and Will won the grant from the NSF/NSA/EPRI consortium that funds their work in a rigorous competition in which 76 proposals were received and only four were funded.

Shen, Will, and ISI collaborator Behnam Salemi published a detailed paper, "Hormone-Inspired Adaptive Communication and Distributed Control for CONRO Self-Reconfigurable Robots," in IEEE Transactions on Robotics and Automation. in October, 2002. They have recently applied for a U.S. patent on the technology.

Working with Shen and Will in the field of space assembly are two faculty members from the USC School of Engineering: Berokh Khoshnevis of the department of industrial and systems engineering; and George Bekey, of the department of computer science. Along with Suri and Salemi, Yusuf Akteskan is working on the space system project.

The ISI Polymorphic Robotics Laboratory is one of six laboratories associated with the USC School of Engineering’s Center for Robotics and Embedded Systems.


Contact: Wei-Min Shen, shen@isi.edu , (310) 448-8710 .

Eric Mankin | EurekAlert!
Further information:
http://www.isi.edu/robots/solar/index.html
http://www.isi.edu/robots/
http://robosphere.arc.nasa.gov/Workshop.html

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>