Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot Space Cowboys

06.12.2002


A unique University of Southern California design for self-organizing robots controlled by "hormonal" software is moving toward space.


Schematic diagram of architecture of self-assembling solar power satellite. Seeker "whip" units, (yellow) powered at both ends, listen for signals from subassemblies, find them, and pull them together.



At the Robosphere 2002 conference held at the NASA Ames Research Center in Silicon Valley November 14-15, Wei-Min Shen of the USC School of Engineering’s Information Sciences Institute (ISI) presented an overview of an audacious project to have pieces of the proposed half-mile-long Space Solar Power System satellite put themselves together--self-assemble--without the help of astronauts.

Shen and co-principal investigator Peter Will are doing more than proposing. They are already testing the hardware and software the system would use in the ISI Polymorphic Robotics Laboratory, of which Shen is director.


Over the past two and a half years, Shen and Will have developed modular individual robot units, each with a computer chip programmed with what the researchers call "hormonal" software. Shen said that such software allows "bifurcation, unification, and behavior shifting" by the modules.

The units can unite themselves into larger wholes, or divide themselves up into smaller ones. "If a six-unit snake splits in half," explained Shen, "you get two smaller, three-unit snakes that function as the larger one did."

Separated units communicate using infrared signals, maneuvering their coupling units into a lock in cooperative, coordinated fashion.

"Behavior shifting" means that the individual units--which are identical--exhibit different behavior according to their position in the assembly.

Will and Shen’s CONRO project created working units that use the software. Shen and Will’s new SOLAR space station proposal, funded by a consortium including NASA, the NSF, and the Electric Power Research Institute (EPRI), proposes to use this architecture on a gigantic scale.

They propose a self-assembling space station consisting of two species of robotic devices, both controlled by the same software.

One species will be the parts that will actually make up the station: solar power units, including necessary utility conduits. Each of these will have a microprocessor running hormonal software. Sets of contiguious units will, once released into space, arrange themselves into the desired configuration.

When these subassemblies are ready, they will signal and alert the second species of robot, the "free-flying intelligent fiber rope matchmaker units," or whips.

Whips will consist of two modular robot units connected by a long connector line that can shorten or lengthen at the direction of the software. They will also have solar-powered rockets, enabling them to move in space, GPS sensors to find their position, communicators, and connectors.

When a completed subassembly signals, a whip will maneuver toward it, lock on, wait for a call from a second assembly, tow the first over, pull them together by winching in the fiber rope, so that the two can attach to each other.

Once mating accomplished, the whip unit would then fly off to find other parts to assemble.

The design, said Will, combines the advantages of free-flying and tethered systems.

In the laboratory, Shen and Will have modeled the concept in two-dimensional form, working with an air-hockey table on which prototype individual units will learn to find each other by sensing each other’s infrared signals, maneuver next to each other using built-in fans, lock on, and pull units together using a motorized cable.

"This will give both the hardware and software a realistic test," said Shen. Researcher Harshit Suri has built a first prototype unit.

Shen and Will won the grant from the NSF/NSA/EPRI consortium that funds their work in a rigorous competition in which 76 proposals were received and only four were funded.

Shen, Will, and ISI collaborator Behnam Salemi published a detailed paper, "Hormone-Inspired Adaptive Communication and Distributed Control for CONRO Self-Reconfigurable Robots," in IEEE Transactions on Robotics and Automation. in October, 2002. They have recently applied for a U.S. patent on the technology.

Working with Shen and Will in the field of space assembly are two faculty members from the USC School of Engineering: Berokh Khoshnevis of the department of industrial and systems engineering; and George Bekey, of the department of computer science. Along with Suri and Salemi, Yusuf Akteskan is working on the space system project.

The ISI Polymorphic Robotics Laboratory is one of six laboratories associated with the USC School of Engineering’s Center for Robotics and Embedded Systems.


Contact: Wei-Min Shen, shen@isi.edu , (310) 448-8710 .

Eric Mankin | EurekAlert!
Further information:
http://www.isi.edu/robots/solar/index.html
http://www.isi.edu/robots/
http://robosphere.arc.nasa.gov/Workshop.html

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>