Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sound waves to chill ice cream in new freezer case concept

04.12.2002


Penn State acousticians have achieved proof of concept for a compact ice cream freezer case based on "green" technology that substitutes sound waves for environment-damaging chemical refrigerants.



Dr. Steven Garrett, the United Technologies Corporation professor of acoustics at Penn State, leads the research team conducting the project with financial support from Ben & Jerry’s and its parent company, Unilever.

"In our proof-of-concept test system, there is no ’test freezer,’ we simply cool an electrically-heated piece of window screen. The coldest temperature we have achieved with this test rig is eight degrees below zero – well below the freezing point of water," Garrett says.


However, although the test rig doesn’t look anything like the freezer display case where you usually pick up your pint of Cherry Garcia, Garrett says it is a big step in the "green" ice cream sales cabinet direction.

"We have achieved proof-of-concept for making a compact chiller that has a volume which is substantially smaller than earlier thermoacoustic chillers," he explains. "And we did it with a system that was carefully and redundantly instrumented for both accurate performance measurement and performance diagnostics."

The team’s progress will be detailed in a paper, "Performance of a Small Low-Lift Regenerator-based Thermoacoustic Refrigerator," Wednesday, Dec. 4 , 2002 at the First Pan-American/Iberian Acoustics Meeting in Cancun, Mexico. Matthew Poese, doctoral candidate in acoustics, is first author of the paper. The work is part of his doctoral thesis.

Garrett explains that his group’s thermoacoustic chiller uses a souped-up loudspeaker to generate high amplitude sound energy in an environmentally safe gas – currently the air we breathe – that is converted directly into useful cooling. The high amplitude sound levels are hundreds of thousands of times beyond even rock concert levels.

The loudspeakers used in thermoacoustics do not need to produce a range of frequencies or tones like a radio. So, Garrett’s group improves their efficiency by operating them at resonance or at the tones they produce by the natural free oscillation of the system. The Penn State group has developed loudspeakers that not only operate near their natural resonance frequencies but also use metal bellows that replace loudspeaker cones to compress the environmentally safe gas -- air in the test case -- used for chilling.

"We have been operating loudspeakers at resonance and using bellows in thermoacoustic devices for 20 years," Garrett adds. "Now, by putting the entire refrigeration core inside the bellows, we’ve substantially reduced the size."

Robert Smith, the third member of the Penn State Applied Research Laboratory team working on the Ben & Jerry’s project, made important contributions to the loudspeaker in his master’s thesis.

Garrett notes, "What began as basic research on the fundamental connections between sound waves and heat transport, funded by the Office of Naval Research, is getting closer to providing an environmentally benign substitute for traditional engine and refrigeration technology."

Gary Epright, Ben & Jerry’s lead process engineer, said "I am proud that Ben & Jerry’s has taken the initiative to explore this beneficial technology with Steve Garrett’s team at Penn State. It is a tremendous opportunity to participate in an innovative technology that could revolutionize the way we understand and use refrigeration. With refrigeration based on sound, using environmentally safe gases, we could go a long way toward restoring atmospheric balances."

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>