Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UB Engineer Develops Novel Method for Assembly of Nanoparticles

03.12.2002


Process may lead to manufacture of nanoscale devices



A University at Buffalo engineer has developed a novel method for assembling nanoparticles into three-dimensional structures that one day may be used to produce new nanoscale tools and machines.

The work could be an important step in fulfilling the immense potential of nanotechnology because it gives scientists and engineers improved control and flexibility in the creation of materials for the manufacture of many nanoscale devices, according to Paschalis Alexandridis, associate professor of chemical engineering in UB’s School of Engineering and Applied Sciences.


Alexandridis and postdoctoral research associate Aristides Docoslis used non-uniform AC electric fields generated by microfabricated electrodes -- which create a motion known as dielectrophoresis -- to stack latex, silica or graphite microparticles into two- and three-dimensional structures of prescribed lengths and composition, held together by the electrical field.

The same process can be applied to nanoparticles, says Alexandridis, whose research is funded by a $100,000 Nanoscale Exploratory Research (NER) grant from the National Science Foundation, Division of Design, Manufacture and Industrial Innovation.

"This process enables you to guide particles to where you want them to go and then scale them up into ordered structures with desired electrical, optical or mechanical properties," explains Alexandridis.

"You can use this process to create a well-defined object and assemble it on demand, which means these materials can actually be used to manufacture nanoscale tools or devices," he adds. "This may be particularly applicable for the manufacture of sensors and photonic devices."

Adaptability is an attractive feature of the process, Alexandridis says. The process can be used to direct and manipulate almost any particle, he explains, whether the particle has a net charge or not, or is suspended in an aqueous or non-aqueous medium.

"Because of this flexibility, there’s no limit to the applications of this process," Alexandridis says. "That’s another advantage for the manufacturability of this method."

Focusing on the dielectrophoresis process, Alexandridis is developing models to predict how various particles, and combination of particles, will behave under the influence of different electrical fields, as a function of particle size and properties, electrode dimensions and pattern, and applied voltage and frequency. This information will help guide future nanomanufacturing applications, he says.

Alexandridis also is developing ways to glue particles together after the electrical field has assembled them.

"The goal is to link the particles in a way that doesn’t change the properties of the structure, but which makes the structure permanent and resilient," he says. "After you glue the particles together you can switch off the electrical field and have a free-standing, ordered structure."

"Or you can change the field frequency so that you can remove selectively the unglued particles," he adds.

Results from Alexandridis’ and Docoslis’ research were published recently in Electrophoresis (2002, 23, 2174-2183).

Nanotechnology is a potentially revolutionary and lucrative scientific industry, with experts predicting manufacture and commercialization of microscopic products benefiting the fields of electronics, medicine, supercomputing, energy and environmental cleanup.

John Della Contrada | EurekAlert!

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>