Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UB Engineer Develops Novel Method for Assembly of Nanoparticles

03.12.2002


Process may lead to manufacture of nanoscale devices



A University at Buffalo engineer has developed a novel method for assembling nanoparticles into three-dimensional structures that one day may be used to produce new nanoscale tools and machines.

The work could be an important step in fulfilling the immense potential of nanotechnology because it gives scientists and engineers improved control and flexibility in the creation of materials for the manufacture of many nanoscale devices, according to Paschalis Alexandridis, associate professor of chemical engineering in UB’s School of Engineering and Applied Sciences.


Alexandridis and postdoctoral research associate Aristides Docoslis used non-uniform AC electric fields generated by microfabricated electrodes -- which create a motion known as dielectrophoresis -- to stack latex, silica or graphite microparticles into two- and three-dimensional structures of prescribed lengths and composition, held together by the electrical field.

The same process can be applied to nanoparticles, says Alexandridis, whose research is funded by a $100,000 Nanoscale Exploratory Research (NER) grant from the National Science Foundation, Division of Design, Manufacture and Industrial Innovation.

"This process enables you to guide particles to where you want them to go and then scale them up into ordered structures with desired electrical, optical or mechanical properties," explains Alexandridis.

"You can use this process to create a well-defined object and assemble it on demand, which means these materials can actually be used to manufacture nanoscale tools or devices," he adds. "This may be particularly applicable for the manufacture of sensors and photonic devices."

Adaptability is an attractive feature of the process, Alexandridis says. The process can be used to direct and manipulate almost any particle, he explains, whether the particle has a net charge or not, or is suspended in an aqueous or non-aqueous medium.

"Because of this flexibility, there’s no limit to the applications of this process," Alexandridis says. "That’s another advantage for the manufacturability of this method."

Focusing on the dielectrophoresis process, Alexandridis is developing models to predict how various particles, and combination of particles, will behave under the influence of different electrical fields, as a function of particle size and properties, electrode dimensions and pattern, and applied voltage and frequency. This information will help guide future nanomanufacturing applications, he says.

Alexandridis also is developing ways to glue particles together after the electrical field has assembled them.

"The goal is to link the particles in a way that doesn’t change the properties of the structure, but which makes the structure permanent and resilient," he says. "After you glue the particles together you can switch off the electrical field and have a free-standing, ordered structure."

"Or you can change the field frequency so that you can remove selectively the unglued particles," he adds.

Results from Alexandridis’ and Docoslis’ research were published recently in Electrophoresis (2002, 23, 2174-2183).

Nanotechnology is a potentially revolutionary and lucrative scientific industry, with experts predicting manufacture and commercialization of microscopic products benefiting the fields of electronics, medicine, supercomputing, energy and environmental cleanup.

John Della Contrada | EurekAlert!

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>