Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UB Engineer Develops Novel Method for Assembly of Nanoparticles

03.12.2002


Process may lead to manufacture of nanoscale devices



A University at Buffalo engineer has developed a novel method for assembling nanoparticles into three-dimensional structures that one day may be used to produce new nanoscale tools and machines.

The work could be an important step in fulfilling the immense potential of nanotechnology because it gives scientists and engineers improved control and flexibility in the creation of materials for the manufacture of many nanoscale devices, according to Paschalis Alexandridis, associate professor of chemical engineering in UB’s School of Engineering and Applied Sciences.


Alexandridis and postdoctoral research associate Aristides Docoslis used non-uniform AC electric fields generated by microfabricated electrodes -- which create a motion known as dielectrophoresis -- to stack latex, silica or graphite microparticles into two- and three-dimensional structures of prescribed lengths and composition, held together by the electrical field.

The same process can be applied to nanoparticles, says Alexandridis, whose research is funded by a $100,000 Nanoscale Exploratory Research (NER) grant from the National Science Foundation, Division of Design, Manufacture and Industrial Innovation.

"This process enables you to guide particles to where you want them to go and then scale them up into ordered structures with desired electrical, optical or mechanical properties," explains Alexandridis.

"You can use this process to create a well-defined object and assemble it on demand, which means these materials can actually be used to manufacture nanoscale tools or devices," he adds. "This may be particularly applicable for the manufacture of sensors and photonic devices."

Adaptability is an attractive feature of the process, Alexandridis says. The process can be used to direct and manipulate almost any particle, he explains, whether the particle has a net charge or not, or is suspended in an aqueous or non-aqueous medium.

"Because of this flexibility, there’s no limit to the applications of this process," Alexandridis says. "That’s another advantage for the manufacturability of this method."

Focusing on the dielectrophoresis process, Alexandridis is developing models to predict how various particles, and combination of particles, will behave under the influence of different electrical fields, as a function of particle size and properties, electrode dimensions and pattern, and applied voltage and frequency. This information will help guide future nanomanufacturing applications, he says.

Alexandridis also is developing ways to glue particles together after the electrical field has assembled them.

"The goal is to link the particles in a way that doesn’t change the properties of the structure, but which makes the structure permanent and resilient," he says. "After you glue the particles together you can switch off the electrical field and have a free-standing, ordered structure."

"Or you can change the field frequency so that you can remove selectively the unglued particles," he adds.

Results from Alexandridis’ and Docoslis’ research were published recently in Electrophoresis (2002, 23, 2174-2183).

Nanotechnology is a potentially revolutionary and lucrative scientific industry, with experts predicting manufacture and commercialization of microscopic products benefiting the fields of electronics, medicine, supercomputing, energy and environmental cleanup.

John Della Contrada | EurekAlert!

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>