Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New methodology to design complete mould QFT multivariable controllers

25.10.2002


This project has been proposed in the doctoral thesis of professor Igor Egaña Santamarina of the Public University of Navarre, called “Design of complete mould QFT multivariable controllers”. Professor Mario Garcia Sanz, from the Department of Automation and Computer Science of the Public University of Navarre, has supervised the project.

Air traffic controllers and wind generator controllers

Control engineering involves the design of mathematical laws that modify the way in which industrial processes progress. That way, for example, when the way in which warming power affects the temperature of the oven is established, it is possible to determine how power must be modified so that opening and closing of the door produces a minimum effect in the inner temperature. But control engineering is present in many other industrial processes. For example, when the ABS reduces the braking of a car to avoid the blocking of wheels, or in case of an electronic circuit that tunes the exact frequency of a digital radio.



The doctoral thesis is set within the Quantitative Feedback Theory (QFT), whose development started at the end of the 50s under the supervision of professor Horowitz. Since then, some of the technical applications based on QFT are air traffic controllers of the most modern airplanes, monitoring systems of high precision satellites, sewage treatment plants or robotic. Similarly, in Navarre, Mario Garcia Sanz –director of this thesis- applies at the present this technology in the design of control systems of a wind generator of 1,5 MW for the company M. Torres Diseños Induatriales S.A.

More efficient way to reduce “coupling”

The doctoral thesis of Igor Egaña has been focused on the study of multivariable systems, that is, with multiple entries that affect multiple outputs. According to professor Egaña, the main characteristic of this kind of processes is that when measuring an error in an output and trying to reduce it acting one of the inputs, causes a failure in various outputs. That is known as the coupling effect between the links. In that sense, the thesis defends a more efficient way to reduce those interactions between links.

As a consequence of the theoretical study, it has been analysed the inclusion of some elements of the controller that usually are not considered in multivariable processes: the elements located outside the main diagonal of the controller.

To verify the validity of those theoretical results, the methodology has been applied in two different processes. On the one side, the introduction of a controller in an industrial robot of the type SCARA has proved the viability of the technical proposal. On the other side, the design of the control algorithm for the heat exchanger of a milk pasteurisation plant, which according to professor Egaña is a process with more complex characteristics from the control point of view, has strengthened the applicability of the new contribution made by this doctoral thesis.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/index.asp?Gelaxka=1&hizk=I

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>