Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New methodology to design complete mould QFT multivariable controllers


This project has been proposed in the doctoral thesis of professor Igor Egaña Santamarina of the Public University of Navarre, called “Design of complete mould QFT multivariable controllers”. Professor Mario Garcia Sanz, from the Department of Automation and Computer Science of the Public University of Navarre, has supervised the project.

Air traffic controllers and wind generator controllers

Control engineering involves the design of mathematical laws that modify the way in which industrial processes progress. That way, for example, when the way in which warming power affects the temperature of the oven is established, it is possible to determine how power must be modified so that opening and closing of the door produces a minimum effect in the inner temperature. But control engineering is present in many other industrial processes. For example, when the ABS reduces the braking of a car to avoid the blocking of wheels, or in case of an electronic circuit that tunes the exact frequency of a digital radio.

The doctoral thesis is set within the Quantitative Feedback Theory (QFT), whose development started at the end of the 50s under the supervision of professor Horowitz. Since then, some of the technical applications based on QFT are air traffic controllers of the most modern airplanes, monitoring systems of high precision satellites, sewage treatment plants or robotic. Similarly, in Navarre, Mario Garcia Sanz –director of this thesis- applies at the present this technology in the design of control systems of a wind generator of 1,5 MW for the company M. Torres Diseños Induatriales S.A.

More efficient way to reduce “coupling”

The doctoral thesis of Igor Egaña has been focused on the study of multivariable systems, that is, with multiple entries that affect multiple outputs. According to professor Egaña, the main characteristic of this kind of processes is that when measuring an error in an output and trying to reduce it acting one of the inputs, causes a failure in various outputs. That is known as the coupling effect between the links. In that sense, the thesis defends a more efficient way to reduce those interactions between links.

As a consequence of the theoretical study, it has been analysed the inclusion of some elements of the controller that usually are not considered in multivariable processes: the elements located outside the main diagonal of the controller.

To verify the validity of those theoretical results, the methodology has been applied in two different processes. On the one side, the introduction of a controller in an industrial robot of the type SCARA has proved the viability of the technical proposal. On the other side, the design of the control algorithm for the heat exchanger of a milk pasteurisation plant, which according to professor Egaña is a process with more complex characteristics from the control point of view, has strengthened the applicability of the new contribution made by this doctoral thesis.

Garazi Andonegi | alfa
Further information:

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Generation of a Stable Biradical

22.03.2018 | Life Sciences

Scientists develop a room temperature maser to amplify weak signals

22.03.2018 | Life Sciences

Jacobs University supports new mapping of Mars, Mercury and the Moon

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>