Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fractals help UCLA researchers design antennas for new wireless devices

22.10.2002


Antennas for the next generation of cellphones and other wireless communications devices may bear a striking resemblance to the Santa Monica Mountains or possibly the California coastline.



That is because UCLA researchers are using fractals -- mathematical models of mountains, trees and coastlines -- to develop antennas that meet the challenging requirements presented by the more sophisticated technology in new cellphones, automobiles and mobile communications devices. These antennas must be miniature and they must be able to operate at different frequencies, simultaneously.

"Manufacturers of wireless equipment, and particularly those in the automotive industry, are interested in developing a single, compact antenna that can perform all the functions necessary to operate AM and FM radios, cellular communications and navigation systems," said Yahya Rahmat-Samii.


Rahmat-Samii, who chairs the electrical engineering department at UCLA’s Henry Samueli School of Engineering and Applied Science, leads the research in this area. His findings were reported in a recent issue of the Institute of Electrical and Electronics Engineers’ Antennas and Propagation Magazine.

Fractals, short for "fractional dimension," are mathematical models originally used to measure jagged contours such as coastlines. Like a mountain range whose profile appears equally craggy when observed from both far and near, fractals are used to define curves and surfaces, independent of their scale. Any portion of the curve, when enlarged, appears identical to the whole curve -- a property known as "self-symmetry."

Rahmat-Samii found the mathematical principles behind the repetition of these geometrical structures with similar shapes could be applied to a methodology for developing antenna designs.

Using this method, he has developed antennas that meet two important challenges presented by the new generation of wireless devices. They conserve space and can operate simultaneously at several different frequencies.

His fractal methodology allows Rahmat-Samii to pack more electrical length into smaller spaces, he said. Increased electrical length means the antennas can resonate at lower frequencies.

Because fractal designs are self-symmetrical (repeat themselves), they are effective in developing antennas that operate at several different frequencies. "One portion of the antenna can resonate at one frequency while another portion resonates at another frequency," Rahmat-Samii said.

UCLA, where much of the early research on internal antennas was conducted in the mid 1990s, is today "one of the leading research institutions exploring the use of fractals in developing antenna design," Rahmat-Samii said.

The subject of fractals came into vogue during the last decade as new-age gurus claimed fractals were capable of all manner of feats. Serious use in engineering, however, has developed over the last five years, Rahmat-Samii said.

This is not the first time Rahmat-Samii has borrowed from other disciplines. He has experimented with using "genetic algorithms" -- the Darwinian notion of natural selection and evolution -- as a means of developing alternative antenna designs. In keeping with the evolutionary model, a computer program "mates" various antenna components to produce new designs. Just as nature does, the algorithm selects the "fittest" design. The process is complete when it has produced a design that meets the experimenter’s objectives.

Although the method produces unanticipated results, it also provides few clues about the next iteration of the design, Rahmat-Samii said. Using fractals, however, makes the process more predictable, giving researchers more control over the results.

David Brown | EurekAlert!

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>