Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fractals help UCLA researchers design antennas for new wireless devices

22.10.2002


Antennas for the next generation of cellphones and other wireless communications devices may bear a striking resemblance to the Santa Monica Mountains or possibly the California coastline.



That is because UCLA researchers are using fractals -- mathematical models of mountains, trees and coastlines -- to develop antennas that meet the challenging requirements presented by the more sophisticated technology in new cellphones, automobiles and mobile communications devices. These antennas must be miniature and they must be able to operate at different frequencies, simultaneously.

"Manufacturers of wireless equipment, and particularly those in the automotive industry, are interested in developing a single, compact antenna that can perform all the functions necessary to operate AM and FM radios, cellular communications and navigation systems," said Yahya Rahmat-Samii.


Rahmat-Samii, who chairs the electrical engineering department at UCLA’s Henry Samueli School of Engineering and Applied Science, leads the research in this area. His findings were reported in a recent issue of the Institute of Electrical and Electronics Engineers’ Antennas and Propagation Magazine.

Fractals, short for "fractional dimension," are mathematical models originally used to measure jagged contours such as coastlines. Like a mountain range whose profile appears equally craggy when observed from both far and near, fractals are used to define curves and surfaces, independent of their scale. Any portion of the curve, when enlarged, appears identical to the whole curve -- a property known as "self-symmetry."

Rahmat-Samii found the mathematical principles behind the repetition of these geometrical structures with similar shapes could be applied to a methodology for developing antenna designs.

Using this method, he has developed antennas that meet two important challenges presented by the new generation of wireless devices. They conserve space and can operate simultaneously at several different frequencies.

His fractal methodology allows Rahmat-Samii to pack more electrical length into smaller spaces, he said. Increased electrical length means the antennas can resonate at lower frequencies.

Because fractal designs are self-symmetrical (repeat themselves), they are effective in developing antennas that operate at several different frequencies. "One portion of the antenna can resonate at one frequency while another portion resonates at another frequency," Rahmat-Samii said.

UCLA, where much of the early research on internal antennas was conducted in the mid 1990s, is today "one of the leading research institutions exploring the use of fractals in developing antenna design," Rahmat-Samii said.

The subject of fractals came into vogue during the last decade as new-age gurus claimed fractals were capable of all manner of feats. Serious use in engineering, however, has developed over the last five years, Rahmat-Samii said.

This is not the first time Rahmat-Samii has borrowed from other disciplines. He has experimented with using "genetic algorithms" -- the Darwinian notion of natural selection and evolution -- as a means of developing alternative antenna designs. In keeping with the evolutionary model, a computer program "mates" various antenna components to produce new designs. Just as nature does, the algorithm selects the "fittest" design. The process is complete when it has produced a design that meets the experimenter’s objectives.

Although the method produces unanticipated results, it also provides few clues about the next iteration of the design, Rahmat-Samii said. Using fractals, however, makes the process more predictable, giving researchers more control over the results.

David Brown | EurekAlert!

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>