Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fractals help UCLA researchers design antennas for new wireless devices

22.10.2002


Antennas for the next generation of cellphones and other wireless communications devices may bear a striking resemblance to the Santa Monica Mountains or possibly the California coastline.



That is because UCLA researchers are using fractals -- mathematical models of mountains, trees and coastlines -- to develop antennas that meet the challenging requirements presented by the more sophisticated technology in new cellphones, automobiles and mobile communications devices. These antennas must be miniature and they must be able to operate at different frequencies, simultaneously.

"Manufacturers of wireless equipment, and particularly those in the automotive industry, are interested in developing a single, compact antenna that can perform all the functions necessary to operate AM and FM radios, cellular communications and navigation systems," said Yahya Rahmat-Samii.


Rahmat-Samii, who chairs the electrical engineering department at UCLA’s Henry Samueli School of Engineering and Applied Science, leads the research in this area. His findings were reported in a recent issue of the Institute of Electrical and Electronics Engineers’ Antennas and Propagation Magazine.

Fractals, short for "fractional dimension," are mathematical models originally used to measure jagged contours such as coastlines. Like a mountain range whose profile appears equally craggy when observed from both far and near, fractals are used to define curves and surfaces, independent of their scale. Any portion of the curve, when enlarged, appears identical to the whole curve -- a property known as "self-symmetry."

Rahmat-Samii found the mathematical principles behind the repetition of these geometrical structures with similar shapes could be applied to a methodology for developing antenna designs.

Using this method, he has developed antennas that meet two important challenges presented by the new generation of wireless devices. They conserve space and can operate simultaneously at several different frequencies.

His fractal methodology allows Rahmat-Samii to pack more electrical length into smaller spaces, he said. Increased electrical length means the antennas can resonate at lower frequencies.

Because fractal designs are self-symmetrical (repeat themselves), they are effective in developing antennas that operate at several different frequencies. "One portion of the antenna can resonate at one frequency while another portion resonates at another frequency," Rahmat-Samii said.

UCLA, where much of the early research on internal antennas was conducted in the mid 1990s, is today "one of the leading research institutions exploring the use of fractals in developing antenna design," Rahmat-Samii said.

The subject of fractals came into vogue during the last decade as new-age gurus claimed fractals were capable of all manner of feats. Serious use in engineering, however, has developed over the last five years, Rahmat-Samii said.

This is not the first time Rahmat-Samii has borrowed from other disciplines. He has experimented with using "genetic algorithms" -- the Darwinian notion of natural selection and evolution -- as a means of developing alternative antenna designs. In keeping with the evolutionary model, a computer program "mates" various antenna components to produce new designs. Just as nature does, the algorithm selects the "fittest" design. The process is complete when it has produced a design that meets the experimenter’s objectives.

Although the method produces unanticipated results, it also provides few clues about the next iteration of the design, Rahmat-Samii said. Using fractals, however, makes the process more predictable, giving researchers more control over the results.

David Brown | EurekAlert!

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>