Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative process will reduce energy consumption and improve product quality in the food industry

18.10.2002


Canadians will eat better and will enjoy a healthier environment thanks to a new canning process for jars and cans. This innovative research is taking place at Agriculture and Agri-Food Canada’s Food Research and Development Centre in Saint-Hyacinthe.

The research project uses a technology that reduces energy consumption in the canning of products containing fruit, vegetable and/or meat pieces, such as sauces and soups.

The advantages include a 30-per-cent reduction in energy consumption during the heating process and a 17- per-cent reduction in greenhouse gas emissions. Above all, food quality is improved. Food retains its flavour and has a crunchier texture and brighter colour. Vitamins and nutrients are preserved. The process will also reduce production costs for food processors.



In the food processing industry, canning is the process that consumes the most energy and leads to the creation of greenhouse gases. To ensure food safety, the contents of a can must be heated to a very high temperature (121 C) for a minimum of three minutes.

The new process, developed by centre researcher Dr. Michèle Marcotte and her team, is designed to replace the current high-temperature method with a two-stage system. The first stage involves acidifying foods to a pH of less than 4.6. The acidification makes it possible to reduce the subsequent pasteurization temperature, while ensuring product safety.

"This project reflects leadership in innovation and dedication to the highest standards of food safety and quality that truly characterize the vision of the Agricultural Policy Framework," said Lyle Vanclief, Minister of Agriculture and Agri-Food. "By combining research, innovation and environmental sustainability, we are recognizing the high expectations of today’s consumers."

The Agricultural Policy Framework, which involves a collaborative effort by the federal and provincial governments and industry, aims to make Canada the world leader in food safety and quality, environmentally responsible production and innovation.

For more information, please contact:
Media Relations
Agriculture and Agri-Food Canada
Ottawa
(613) 759-7972


Backgrounder
New Ag Can(ning) system cuts energy use/greenhouse gas emissions and improves food quality
If canned cranberies appear on your plate to accompany your Thanksgiving turkey this weekend, or maybe heating up a little store-bought gravy to complement the mashed potatoes, spare a thought for Nicolas Appert, who developed the canning process that first made food "convenient".

The idea of canning first came from Napoleon who wanted to ensure his troops were well fed as they traveled from countryside to countryside. Nicolas Appert, a French engineer, in 1795, took "Little Corporal’s" idea one step further by inventing the canning process that we know today.

Today the canning industry produces about 200 billion cans worldwide every year. In Canada, roughly $2.5 billion worth of easy-open canned and preserved foods are shipped annually, but the process behind the product retains some environmental and economic disadvantages.

It remains among the most energy intensive of all food processing technologies. The contents of every one of the cans is heated under steam pressure to a temperature of 121 degrees centigrade for a minimum of three minutes. This process is needed to prevent the growth of Clostridium botulinum bacteria. It’s how the food is made and kept safe for consumption, but that sterilization requires vast amounts of energy, and the production of that energy creates a significant volume of greenhouse gases.

In the world of Kyoto and climate change, leaders and researchers are looking hard for ways to improve the planet, while reducing the damage that food production is doing to the environment. Led by Dr. Michèle Marcotte, a team of Agriculture and Agri-Food Canada (AAFC) scientists at the department’s Food Research & Development Centre, in Saint-Hyacinthe, Quebec, may have developed a process that will make an important contribution.

The new process is based on replacing the extreme high temperature method currently used in the canning industry, with a low temperature pasteurization system. As a result, energy use during the canning process is cut by 30 per cent; greenhouse gas emissions are reduced by 17 per cent. The process also involves acidifying foods to a pH of less than 4.6. The acidification makes it possible to reduce the subsequent pasteurization temperature, while ensuring product safety.

The benefits don’t end there. By reducing the food’s exposure to high temperatures, the AAFC method also improves its nutritional quality by preserving the vitamins and anti-oxidants that would be destroyed by the heat used in conventional canning systems. Food retains its flavour and has a crunchier texture and brighter colour. Some of the foods being studied include, sauces, gravies and soups.

Dr. Marcotte’s group is one year into a three-year study of the new system, using a pilot canning plant at the Saint-Hyacinthe centre. The plan is that they will pass along their results to food processors at the end of the project, but based on the findings to date, one company has already adopted the new technology.

In the 207 years since Appert patented the original canning process there have been major improvements in technology. The instructions on a can of veal carried by a 19th century arctic exploration group read: "Cut around the top, near the outer edge with a chisel and hammer." At a global level, the Saint-Hyacinthe group’s work promises a food quality and environmental advance that puts existing processing systems in the hammer and chisel innovation league.

Media Relations | EurekAlert!
Further information:
http://www.agr.gc.ca/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>