Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser lights new path for homeland security


Schematic of a LIBS system
Courtesy of US Army Research Laboratory

Instant detection for chemicals, explosives, and biohazards

A little over a year after September 11, a laser technique is lighting a new path to homeland security. In recent Army laboratory research, this technique instantly detected and identified various explosives.

Preliminary results indicate that it can also tell the difference between several close relatives of anthrax.

Recent breakthroughs now let it detect any known substance, at least in theory. The laser technique-called LIBS, for laser-induced breakdown spectroscopy -is the subject of a meeting sponsored by the Optical Society of America in Orlando later this month.

"September 11 has heightened the need for much better sensors for detecting explosives, biological and chemical agents…and anything else that is harmful to anyone including the citizens of this country," says researcher Andrzej Miziolek (pronounced miz-E-oh-lek) of the United States Army Research Laboratory. On September 25, Miziolek will chair a panel discussion on LIBS and homeland defense at the Orlando meeting.


A Florida company called Ocean Optics Inc. makes the state-of-the-art spectrometer the Army used in recent research. The LIBS laser zapped the target sample, such as contaminated soil, and "has the potential of detecting various explosives in a single shot," says Miziolek.

In other preliminary research, Miziolek and colleagues used LIBS on three strains of bacteria, all closely related to the bacterium that causes anthrax. The laser light pulverized the bacteria spores into atoms and molecules. LIBS analyzed the mix so precisely, Miziolek says, that it detected at least 15 spectral differences among the three types of bacteria.


The Army’s still continuing research, but Miziolek and fellow LIBS researchers already have visions of the kinds of things that LIBS can do. They need to test LIBS much more and make it truly portable. But these practicalities have not stopped LIBS researchers from envisioning the possibilities for improving homeland security.

At subway stations and other high-traffic environments, a LIBS system could continuously monitor the air for signs of chemical or biological agents and alert officials if it finds a potentially hazardous substance. Combine LIBS systems with filters, Miziolek says, and you could detect an agent, then zap an electric charge on it, draw it towards a pair of electrodes, and capture and destroy the agent before it does any damage.

"There hasn’t been a lot of funding in developing LIBS so far"-Miziolek says, but he expects that September 11-and the promising research at the Army and elsewhere-are going to change this situation.


Researchers envision a LIBS wand that examines suspicious materials, such as a suspicious powder. Workers could fire the laser to analyze a target that’s hundreds of feet away. Or, designers could thread it through fiber optics to analyze concealed materials-a capability that would be helpful for monitoring hard-to-access areas.


What’s more, a LIBS system is fairly inexpensive-approximately $50,000 for a system that can detect a wide range of substances, and less than $20,000 for a LIBS system optimized for specific threats.

LIBS is also convenient. "The whole LIBS technique has great potential to be made portable," according to Miziolek. It requires a laser "the size of a flashlight," he says, and even the most powerful LIBS detectors are only a couple of shoeboxes in size.


A LIBS laser pulse heats a tiny portion of the sample to temperatures of up to 43,000 degrees Fahrenheit (approx 24,000 degrees Kelvin), hotter than some parts of the sun. The laser pulse-lasting just nanoseconds, or billionths of a second--zaps a specimen, such as an unknown powder, a test tube containing suspicious bacteria, or even a spot of air.

The extreme heat breaks matter into plasma-a collection of atoms and ions (positively charged atoms and molecules) and negatively charged electrons. After about a millionth of a second, the ions and electrons combine to form atoms and molecules again. But now these atoms and molecules are highly energized. To shed this energy, each kind of atom or molecule radiates its "elemental fingerprint"-a unique spectrum of light that reveals its identity.

"For every element," Miziolek says, "we know what colors of light an atom will emit."


LIBS can identify any known substance, in principle, from what’s in a volcanic rock to a particular strain of bacteria to an unknown explosive. "The recent laboratory results have been exciting and encouraging, but have yet to be proven in the field. However, with the recent significant advances in the hardware and software, the goal of field-portable instruments is right around the corner, say in a year’s time-frame" says Miziolek.

Once LIBS detects the types and quantities of chemicals, it consults chemical profiles of known substances, like TNT. If the instrument records a certain proportion of carbon, nitrogen, hydrogen, and oxygen, it can then check a computer database to see if this matches the exact proportion of elements in TNT-or any other substance in the database.


LIBS has been around since the early 1980s, when researchers at Los Alamos National Laboratory invented it for chemical analysis. However, LIBS didn’t really catch on in the US. Instead, other countries picked up on the technology. At a recent LIBS conference with 130 papers, Miziolek remembers, US research teams presented fewer than 15 papers.

"This is a technique that’s still quite new to the US," Miziolek says. "But that’s about to change significantly because of September 11," he says.


Homeland security is not LIBS’ only use.

This winter, Olympics officials used LIBS to be sure bobsledders were using regulation metals in their bobsleds.


Ben Stein
American Institute of Physics

Craig Smith
American Institute of Physics

Colleen Morrison
Optical Society of America

Ben Stein | EurekAlert!
Further information:

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>