Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser lights new path for homeland security

20.09.2002


Schematic of a LIBS system
Courtesy of US Army Research Laboratory


Instant detection for chemicals, explosives, and biohazards

A little over a year after September 11, a laser technique is lighting a new path to homeland security. In recent Army laboratory research, this technique instantly detected and identified various explosives.

Preliminary results indicate that it can also tell the difference between several close relatives of anthrax.



Recent breakthroughs now let it detect any known substance, at least in theory. The laser technique-called LIBS, for laser-induced breakdown spectroscopy -is the subject of a meeting sponsored by the Optical Society of America in Orlando later this month.

"September 11 has heightened the need for much better sensors for detecting explosives, biological and chemical agents…and anything else that is harmful to anyone including the citizens of this country," says researcher Andrzej Miziolek (pronounced miz-E-oh-lek) of the United States Army Research Laboratory. On September 25, Miziolek will chair a panel discussion on LIBS and homeland defense at the Orlando meeting.

ARMY RESEARCH DETECTS HAZARDOUS COMPOUNDS---IN AN INSTANT

A Florida company called Ocean Optics Inc. makes the state-of-the-art spectrometer the Army used in recent research. The LIBS laser zapped the target sample, such as contaminated soil, and "has the potential of detecting various explosives in a single shot," says Miziolek.

In other preliminary research, Miziolek and colleagues used LIBS on three strains of bacteria, all closely related to the bacterium that causes anthrax. The laser light pulverized the bacteria spores into atoms and molecules. LIBS analyzed the mix so precisely, Miziolek says, that it detected at least 15 spectral differences among the three types of bacteria.

HE FUTURE OF LIBS

The Army’s still continuing research, but Miziolek and fellow LIBS researchers already have visions of the kinds of things that LIBS can do. They need to test LIBS much more and make it truly portable. But these practicalities have not stopped LIBS researchers from envisioning the possibilities for improving homeland security.

At subway stations and other high-traffic environments, a LIBS system could continuously monitor the air for signs of chemical or biological agents and alert officials if it finds a potentially hazardous substance. Combine LIBS systems with filters, Miziolek says, and you could detect an agent, then zap an electric charge on it, draw it towards a pair of electrodes, and capture and destroy the agent before it does any damage.

"There hasn’t been a lot of funding in developing LIBS so far"-Miziolek says, but he expects that September 11-and the promising research at the Army and elsewhere-are going to change this situation.

DETECTION FROM A DISTANCE

Researchers envision a LIBS wand that examines suspicious materials, such as a suspicious powder. Workers could fire the laser to analyze a target that’s hundreds of feet away. Or, designers could thread it through fiber optics to analyze concealed materials-a capability that would be helpful for monitoring hard-to-access areas.

INEXPENSIVE AND PORTABLE

What’s more, a LIBS system is fairly inexpensive-approximately $50,000 for a system that can detect a wide range of substances, and less than $20,000 for a LIBS system optimized for specific threats.

LIBS is also convenient. "The whole LIBS technique has great potential to be made portable," according to Miziolek. It requires a laser "the size of a flashlight," he says, and even the most powerful LIBS detectors are only a couple of shoeboxes in size.

HOTTER THAN PARTS OF THE SUN

A LIBS laser pulse heats a tiny portion of the sample to temperatures of up to 43,000 degrees Fahrenheit (approx 24,000 degrees Kelvin), hotter than some parts of the sun. The laser pulse-lasting just nanoseconds, or billionths of a second--zaps a specimen, such as an unknown powder, a test tube containing suspicious bacteria, or even a spot of air.

The extreme heat breaks matter into plasma-a collection of atoms and ions (positively charged atoms and molecules) and negatively charged electrons. After about a millionth of a second, the ions and electrons combine to form atoms and molecules again. But now these atoms and molecules are highly energized. To shed this energy, each kind of atom or molecule radiates its "elemental fingerprint"-a unique spectrum of light that reveals its identity.

"For every element," Miziolek says, "we know what colors of light an atom will emit."

DETECTORS CAN IDENTIFY ANYTHING

LIBS can identify any known substance, in principle, from what’s in a volcanic rock to a particular strain of bacteria to an unknown explosive. "The recent laboratory results have been exciting and encouraging, but have yet to be proven in the field. However, with the recent significant advances in the hardware and software, the goal of field-portable instruments is right around the corner, say in a year’s time-frame" says Miziolek.

Once LIBS detects the types and quantities of chemicals, it consults chemical profiles of known substances, like TNT. If the instrument records a certain proportion of carbon, nitrogen, hydrogen, and oxygen, it can then check a computer database to see if this matches the exact proportion of elements in TNT-or any other substance in the database.

U.S. DEVELOPED IT, THEN FORGOT IT

LIBS has been around since the early 1980s, when researchers at Los Alamos National Laboratory invented it for chemical analysis. However, LIBS didn’t really catch on in the US. Instead, other countries picked up on the technology. At a recent LIBS conference with 130 papers, Miziolek remembers, US research teams presented fewer than 15 papers.

"This is a technique that’s still quite new to the US," Miziolek says. "But that’s about to change significantly because of September 11," he says.

SAFETY AT HOME, EXPLORING MARS, KEEPING ATHLETES HONEST

Homeland security is not LIBS’ only use.

This winter, Olympics officials used LIBS to be sure bobsledders were using regulation metals in their bobsleds.


Contact:

Ben Stein
American Institute of Physics
301-209-3091
bstein@aip.org

Craig Smith
American Institute of Physics
301-209-3088
csmith@aip.org

Colleen Morrison
Optical Society of America
202-416-1437
cmorri@osa.org

Ben Stein | EurekAlert!
Further information:
http://www.osa.org/meetings/topicals/LIBS/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>