Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging apparatus characterizes drops in ’dirty’ laboratory environments

20.09.2002


A high-fidelity spectrometric system for studying the behavior of drops and particles in industrial flame reactors has been constructed by researchers at the University of Illinois at Urbana-Champaign in collaboration with researchers at the University of Arizona. The instrument was used to study the potential of thermal combustors for reducing the volume of liquid nuclear wastes for safe, long-term storage.



Vitrification of radioactive waste into glassy solids is the most popular approach for disposal. By spraying radioactive sludge into a high-temperature combustor, essentially all the water and other nonradioactive material could be removed, leaving only the radioactive metallic elements to be vitrified for burial. Under optimized conditions, up to 99.99 percent of the metal ions in a waste stream can be scavenged in the combustor.

"That kind of efficiency would be great for most applications, but it’s not good enough when dealing with radioactive waste," said Alexander Scheeline, a professor of chemistry at Illinois. "Understanding the cause of the unscavenged fraction and devising a way to reduce it are essential if thermal processing is to be used for nuclear waste treatment."


One possible explanation is that large "rogue" drops are responsible for the unscavenged metals, Scheeline said. These drops do not pass through the hottest zones in the combustor, resulting in only partial vaporization.

To investigate the role of rogue drops in this process, Scheeline and his colleagues --Illinois postdoctoral researcher Jerry Cabalo, Arizona professor and head of chemical and environmental engineering Jost Wendt, and Arizona graduate student John Schmidt -- developed an optical system to monitor drop sizes and trajectories at very high spatial resolutions.

"In the thermal waste destruction process, small particle formation is also very important," Scheeline said. "Metals released into the gas phase readily form small particles, so it was crucial that this system also have the capability of detecting small soot particles."

In operation, large drops of water or diesel fuel were injected into the furnace. An excimer laser sent a beam into the combustor, illuminating a plane through which the drops passed. The scattered light was then passed to a CCD (charge-coupled device) camera and analyzed.

In contrast to optical monitoring of typical combustion experiments performed in a reasonably clean environment, "these measurements took place in a coal combustion laboratory at the University of Arizona," Scheeline said. "Coal dust from experiments and sand from the desert were all-too-frequent visitors."

To protect delicate optical components, the researchers covered the optical system with plastic panels and pumped clean, dry air into the enclosure. "Despite months of experiments on coal dust combustion taking place in the laboratory -- which left a thick layer of dust on the outside of the spectrograph and on the plastic housing -- the optical path remained free of dust and other contaminants," Scheeline said.

In their initial studies, the researchers demonstrated that the optical system could track large drops and the resulting soot particles through the flame. "To get these drops to break up and vaporize, we need a longer combustion zone, or we need to spray finer drops," Scheeline said.

The same kind of optical measurements and combustion research is relevant to designing cleaner-running automobile engines, studying combustion processes in rocket engines, and developing alternative means for solid waste disposal.

The researchers describe their instrumentation and experiments in the October issue of Applied Spectroscopy. The U.S. Department of Energy supported this work.

Jim Kloeppel | UIUC

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>