Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for nano-scale delivery of medicine using a light beam to move liquid through tiny tubes

29.08.2002


Medical researchers would like to use nano-scale tubes to push very tiny amounts of drugs dissolved in water to exactly where they are needed in the human body.



The roadblock to putting this theory into practical use has been the challenge of building pumps small enough to do the job. In addition to the engineering challenge of building a nano-scale pump, there is the added complication of clogging by any biological molecule that can occur in valves small enough to fit a channel the size of bacteria.

The solution – discovered by researchers at Arizona State University – is to create a system that does not rely on mechanical parts.


The ASU team of scientists and engineers reports in the American Chemical Society journal Langmuir (Thursday, August 29, 2002) on a technique they developed to pull water up a tube tinier than a straw by shining a beam of light on the surface of the tube. This technological advance, referred to as photocapillarity, may one day find a use in nanotechnology applications, such as the targeted distribution of medicine in the body.

"As the size of capillaries or channels in devices shrinks, it becomes very difficult to control the movement of "liquid," says Dr. Antonio Garcia, Arizona State University Bioengineering professor. "The everyday use of mechanical valves and pumps becomes difficult in nanotechnology because making them tinier is a manufacturing challenge. Also, any real-life application would be prone to operational problems, such as clogging of the pump or valve by tiny molecules."

Garcia, and colleagues Devens Gust and Mark Hayes, professors in the ASU Department of Chemistry & Biochemistry, have combined their bioengineering and chemistry skills to build upon the research on light responsive molecules.

With proceeds from a National Science Foundation grant, the researchers found a way of attaching the molecules to the surface and structuring the surrounding surface to control the spread of water.

"When we shine light just beyond the visible range, the light responsive molecules attract water and trigger the advancement of water through the channel," says Garcia.

An added benefit to the research is the development of a science lab demonstration. By the end of the year, students and teachers can order inexpensive glass tubes prepared by the ASU researchers and a laboratory guide to exploring the phenomena.

"Our hope is that by making this lab kit available it will stimulate the creativity of the next generation of scientists and engineers who will routinely design new products using nanotechnology," Garcia says.

Source: Tony Garcia, ASU Bioengineering, 480-965-8798

Virgil Renzulli | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>