Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for nano-scale delivery of medicine using a light beam to move liquid through tiny tubes

29.08.2002


Medical researchers would like to use nano-scale tubes to push very tiny amounts of drugs dissolved in water to exactly where they are needed in the human body.



The roadblock to putting this theory into practical use has been the challenge of building pumps small enough to do the job. In addition to the engineering challenge of building a nano-scale pump, there is the added complication of clogging by any biological molecule that can occur in valves small enough to fit a channel the size of bacteria.

The solution – discovered by researchers at Arizona State University – is to create a system that does not rely on mechanical parts.


The ASU team of scientists and engineers reports in the American Chemical Society journal Langmuir (Thursday, August 29, 2002) on a technique they developed to pull water up a tube tinier than a straw by shining a beam of light on the surface of the tube. This technological advance, referred to as photocapillarity, may one day find a use in nanotechnology applications, such as the targeted distribution of medicine in the body.

"As the size of capillaries or channels in devices shrinks, it becomes very difficult to control the movement of "liquid," says Dr. Antonio Garcia, Arizona State University Bioengineering professor. "The everyday use of mechanical valves and pumps becomes difficult in nanotechnology because making them tinier is a manufacturing challenge. Also, any real-life application would be prone to operational problems, such as clogging of the pump or valve by tiny molecules."

Garcia, and colleagues Devens Gust and Mark Hayes, professors in the ASU Department of Chemistry & Biochemistry, have combined their bioengineering and chemistry skills to build upon the research on light responsive molecules.

With proceeds from a National Science Foundation grant, the researchers found a way of attaching the molecules to the surface and structuring the surrounding surface to control the spread of water.

"When we shine light just beyond the visible range, the light responsive molecules attract water and trigger the advancement of water through the channel," says Garcia.

An added benefit to the research is the development of a science lab demonstration. By the end of the year, students and teachers can order inexpensive glass tubes prepared by the ASU researchers and a laboratory guide to exploring the phenomena.

"Our hope is that by making this lab kit available it will stimulate the creativity of the next generation of scientists and engineers who will routinely design new products using nanotechnology," Garcia says.

Source: Tony Garcia, ASU Bioengineering, 480-965-8798

Virgil Renzulli | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>