Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Nanoantennas’ could bring sensitive detectors, optical circuits

22.08.2002


Researchers have shown how tiny wires and metallic spheres might be arranged in various shapes to form "nanoantennas" that dramatically increase the precision of medical diagnostic imaging and devices that detect chemical and biological warfare agents.



Engineers from Purdue University have demonstrated through mathematical simulations that nanometer-scale antennas with certain geometric shapes should be able to make possible new sensors capable of detecting a single molecule of a chemical or biological agent. Such an innovation could result in detectors that are, in some cases, millions of times more sensitive than current technology.

The nanoantennas in the simulations are made of metal wires and spheres only about 10 nanometers thick – or roughly 100 atoms wide. They are an example of "left-handed" materials, meaning they are able to reverse the normal behavior of visible light and other forms of electromagnetic radiation.


Ordinary materials, such as glass, plastic, air and water, are called "right-handed" because of the way in which light bends as it penetrates a material. Left-handed materials have the ability to bend waves of electromagnetic radiation in the opposite direction of right-handed materials. This unusual property means that such materials might be used to create a so-called "super lens" that drastically improves the quality of medical diagnostic images.

The Purdue researchers are the first to show precisely how left-handed materials – the nanoantennas – could be applied to visible light and other electromagnetic radiation consisting of short wavelengths. Scientists at the University of California at San Diego proved two years ago that left-handed materials could be applied to devices that use microwaves, which are much longer than the waves needed for medical imaging, and for sensors used in spectroscopy to detect chemicals and biological agents. The phenomenon was first predicted in the late 1960s.

"All of the work in this area so far has been done in the microwave spectral range," said Vladimir Shalaev, a professor in Purdue’s School of Electrical and Computer Engineering. "We believe that this is the first project for how these types of materials can be used in the visible range of the electromagnetic spectrum."

The Purdue researchers have shown in theory how the same phenomenon could be scaled down to devices only nanometers wide. The research also shows how nanoantennas with specific shapes are critical for receiving certain frequencies of electromagnetic radiation. The findings were published in the March issue of the Journal of Nonlinear Optical Physics and Materials. The paper was written by Shalaev, Viktor A. Podolskiy, a post-doctoral fellow at Princeton University, and Andrey K. Sarychev, a senior research scientist at Purdue.

Purdue researchers plan to take the work a step further by creating the nanoantennas and conducting experiments to support the theoretical calculations, Shalaev said.

"Left-handed materials might have loads of applications," Shalaev said. "We don’t know yet the full potential of these materials because it’s a really new field."

The researchers showed how the nanoantennas could be created by arranging pairs of tiny wires parallel to each other. That arrangement, in theory, enables the nanoantennas to achieve a "negative index of refraction," said Shalaev, a physicist by training.

Light and other forms of radiation bend as they pass through a material. Physicists measure this bending of radiation by its "index of refraction." The larger a material’s index, the slower light travels through it, and the more it bends, or changes direction when going from one material to a different one. Because left-handed materials bend light in precisely the opposite direction as right-handed materials, they are said to have a "negative index of refraction."

"With these new types of materials, it may be possible to accomplish better performance than all existing materials, in terms of making images and manipulating light," Shalaev said.

The nanoantennas work by using clouds of electrons, all moving in unison as if they were a single object instead of millions of individual electrons. These groups of electrons are known collectively as "plasmons."

Researchers hope to one day use nanoantennas to create more compact, faster circuits and computers that use packets of light, called photons, instead of electrons for carrying signals. Photons travel much faster than electrons, but, unlike electrons, they do not possess an electrical charge. This lack of an electrical charge makes it far more difficult to manipulate photons.

"Because electrons are negatively charged particles, it’s easy to manipulate them," Shalaev said. "You just apply a field and they start moving.

"It turns out that, by employing these plasmonic nanomaterials, you should be able to manipulate light. You can guide light. You can basically simulate all the basic fundamental properties of electronic circuits, but in this case photons start to work."

Such photonic circuits could usher in a new class of ultrasensitive sensors that detect tiny traces of chemicals and biological materials, making them useful for applications including analyzing a patient’s DNA for medical diagnostics, monitoring air quality for pollution control and detecting dangerous substances for homeland security.

"This could be a way to dramatically enhance sensitivity in detecting molecules," Shalaev said. "That’s a great goal. These plasmonic nanomaterials accumulate electromagnetic energy in extremely small areas, nanoscale areas. It’s like focusing light in areas much smaller than the wavelengths of light.

"Conventional lenses cannot focus light in an area smaller than the wavelength of the light. When you use these plasmonic nanomaterials, which act like nanoantennas, you do focus light in areas much smaller than the wavelengths. This means that metallic nanostructures might be able to detect even a single molecule of a substance, which is not possible with conventional optics."

The nanoantenna shapes used in the simulations ranged from single spheres to more complex geometric configurations called "fractals," in which the same shape is repeated in smaller and smaller sections.

Using metallic structures only a few nanometers thick is critical to applying the technique to visible light.

"Light cannot go into metals," Shalaev said. "But when you take a very small piece of metal, the light goes through completely and you very efficiently excite the whole piece of metal."

The research has been funded by the National Science Foundation.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Source: Vladimir Shalaev, (765) 494-9855, shalaev@ecn.purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu
NOTE TO JOURNALISTS: An electronic or paper copy of the research paper is available from Emil Venere, (765) 494-4709, venere@purdue.edu.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>