Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could bring widespread uses for ’nanocrystals’

19.08.2002


Researchers at Purdue University have made a surprising discovery that could open up numerous applications for metal "nanocrystals," or tiny crystals that are often harder, stronger and more wear resistant than the same materials in bulk form.

The research engineers have discovered that the coveted nanocrystals are contained in common scrap, the chips that are normally collected and melted down for reuse.

"Imagine, you have all of these bins full of chips, and they get melted down as scrap," said Srinivasan Chandrasekar, a professor of industrial engineering. "But, in some sense, the scrap could be more valuable pound-for-pound than the material out of which the part is made."



Nanocrystals might be used to make super-strong and long-lasting metal parts. The crystals also might be added to plastics and other metals to make new types of composite structures for everything from cars to electronics.

However, nanocrystals have been far too expensive and difficult to produce to be of any practical industrial or commercial use. The cost of making nanocrystals is at least $100 per pound, while nanocrystals of certain metals critical to industry cannot be made at all with present laboratory techniques, said Chandrasekar and Dale Compton, also a professor of industrial engineering at Purdue.

"Our contribution has been in developing a process that we think can be used to make these materials in large quantities at very low cost," Chandrasekar said. "The cost is expected to be no more than $1 per pound, plus the initial cost of the bulk material."

Findings will appear in the October issue of the Journal of Materials Research, published by the Materials Research Society. The paper was written by Travis L. Brown and Srinivasan Swaminathan, graduate students in Purdue’s School of Industrial Engineering, Chandrasekar and Compton, Alexander King, head of the School of Materials Engineering, and Kevin Trumble, a professor in the School of Materials Engineering.

One process now used to make nanocrystals in research labs involves heating a metal until it vaporizes and then collecting nanocrystals as the vaporized metal condenses onto a cold surface.

"The process is cumbersome, and if you want to make a pound of the material, or a few hundred pounds, it’s time-consuming," Chandrasekar said. "There are other techniques, but all of them have serious limitations."

Chandrasekar and Compton have discovered that the chips left over from machining are either entirely or primarily made of nanocrystals. The chips, which are shaved away from metals as they are machined, ordinarily are collected as scrap, melted down and reused. But melting down the chips turns nanocrystals back into ordinary bulk metals, removing their super strength, wear resistance and other unusual properties.

These chips, then, might be saved and processed for use in a wide range of products. Metal nanocrystals might be incorporated into car bumpers, making the parts stronger, or into aluminum, making it more wear resistant. Metal nanocrystals might be used to produce bearings that last longer than their conventional counterparts, new types of sensors and components for computers and electronic hardware.

Nanocrystals of various metals have been shown to be 100 percent, 200 percent and even as much as 300 percent harder than the same materials in bulk form. Because wear resistance often is dictated by the hardness of a metal, parts made from nanocrystals might last significantly longer than conventional parts.

"One of the really big advantages of this is that you can do it with almost any material," Compton said. "You can make nanocrystals of steels, tungsten, titanium alloys, nickel alloys."

The engineers have measured increased hardness in nanocrystals of copper, tool steel, stainless steel, two other types of steel alloys and iron.

"We have a lot of data demonstrating that these materials are nanocrystalline and that they have enhanced mechanical properties," Chandrasekar said.

Currently, though, it is either prohibitively expensive or impossible to make nanocrystals of many alloys, including steel alloys critical to industry and commercial products.

The Purdue researchers were led to their discovery by findings in scientific literature.

"There is some work in the literature that says if you introduce very large strains into a material it will be converted into nanocrystalline," Compton said. "In our research, we knew that there was strain being introduced at the point of the cutting tool."

The very strains caused by a cutting tool also produces nanocrystals about 100 nanometers in diameter, he said.

Nano is a prefix meaning one-billionth, so a nanometer is one-billionth of a meter, which is roughly 10 atoms wide.

Nanocrystals are not currently used to make products. However, experimental uses for nanocrystals include research aimed at developing high-performance bearings, such as those used for helicopter rotors; creating new types of high-strength, lightweight composite materials; making superior fuel-injection components for diesel engines; and producing new types of chemical catalysts.

Further research will be needed to determine whether the nanocrystals contained in scrap chips retain their desired properties after standard processing steps. Those steps include milling the chips to make powders and then compressing and heating the powders to make metal parts. Nanocrystals currently produced in laboratories have been subjected to such processes, and they have retained their nanocrystalline properties, the engineers said.

Purdue has filed a patent application. The work has been funded by private donations and the Trask Pre-Seed Venture Fund, originally established in 1974 through an estate gift from Vern and Ramoth Trask, both Purdue alumni.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Dale Compton, (765) 494-0828, dcompton@ecn.purdue.edu
Srinivasan Chandrasekar, (765) 494-3623, chandy@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu/
http://www.mrs.org/publications/jmr/

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>