Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could bring widespread uses for ’nanocrystals’

19.08.2002


Researchers at Purdue University have made a surprising discovery that could open up numerous applications for metal "nanocrystals," or tiny crystals that are often harder, stronger and more wear resistant than the same materials in bulk form.

The research engineers have discovered that the coveted nanocrystals are contained in common scrap, the chips that are normally collected and melted down for reuse.

"Imagine, you have all of these bins full of chips, and they get melted down as scrap," said Srinivasan Chandrasekar, a professor of industrial engineering. "But, in some sense, the scrap could be more valuable pound-for-pound than the material out of which the part is made."



Nanocrystals might be used to make super-strong and long-lasting metal parts. The crystals also might be added to plastics and other metals to make new types of composite structures for everything from cars to electronics.

However, nanocrystals have been far too expensive and difficult to produce to be of any practical industrial or commercial use. The cost of making nanocrystals is at least $100 per pound, while nanocrystals of certain metals critical to industry cannot be made at all with present laboratory techniques, said Chandrasekar and Dale Compton, also a professor of industrial engineering at Purdue.

"Our contribution has been in developing a process that we think can be used to make these materials in large quantities at very low cost," Chandrasekar said. "The cost is expected to be no more than $1 per pound, plus the initial cost of the bulk material."

Findings will appear in the October issue of the Journal of Materials Research, published by the Materials Research Society. The paper was written by Travis L. Brown and Srinivasan Swaminathan, graduate students in Purdue’s School of Industrial Engineering, Chandrasekar and Compton, Alexander King, head of the School of Materials Engineering, and Kevin Trumble, a professor in the School of Materials Engineering.

One process now used to make nanocrystals in research labs involves heating a metal until it vaporizes and then collecting nanocrystals as the vaporized metal condenses onto a cold surface.

"The process is cumbersome, and if you want to make a pound of the material, or a few hundred pounds, it’s time-consuming," Chandrasekar said. "There are other techniques, but all of them have serious limitations."

Chandrasekar and Compton have discovered that the chips left over from machining are either entirely or primarily made of nanocrystals. The chips, which are shaved away from metals as they are machined, ordinarily are collected as scrap, melted down and reused. But melting down the chips turns nanocrystals back into ordinary bulk metals, removing their super strength, wear resistance and other unusual properties.

These chips, then, might be saved and processed for use in a wide range of products. Metal nanocrystals might be incorporated into car bumpers, making the parts stronger, or into aluminum, making it more wear resistant. Metal nanocrystals might be used to produce bearings that last longer than their conventional counterparts, new types of sensors and components for computers and electronic hardware.

Nanocrystals of various metals have been shown to be 100 percent, 200 percent and even as much as 300 percent harder than the same materials in bulk form. Because wear resistance often is dictated by the hardness of a metal, parts made from nanocrystals might last significantly longer than conventional parts.

"One of the really big advantages of this is that you can do it with almost any material," Compton said. "You can make nanocrystals of steels, tungsten, titanium alloys, nickel alloys."

The engineers have measured increased hardness in nanocrystals of copper, tool steel, stainless steel, two other types of steel alloys and iron.

"We have a lot of data demonstrating that these materials are nanocrystalline and that they have enhanced mechanical properties," Chandrasekar said.

Currently, though, it is either prohibitively expensive or impossible to make nanocrystals of many alloys, including steel alloys critical to industry and commercial products.

The Purdue researchers were led to their discovery by findings in scientific literature.

"There is some work in the literature that says if you introduce very large strains into a material it will be converted into nanocrystalline," Compton said. "In our research, we knew that there was strain being introduced at the point of the cutting tool."

The very strains caused by a cutting tool also produces nanocrystals about 100 nanometers in diameter, he said.

Nano is a prefix meaning one-billionth, so a nanometer is one-billionth of a meter, which is roughly 10 atoms wide.

Nanocrystals are not currently used to make products. However, experimental uses for nanocrystals include research aimed at developing high-performance bearings, such as those used for helicopter rotors; creating new types of high-strength, lightweight composite materials; making superior fuel-injection components for diesel engines; and producing new types of chemical catalysts.

Further research will be needed to determine whether the nanocrystals contained in scrap chips retain their desired properties after standard processing steps. Those steps include milling the chips to make powders and then compressing and heating the powders to make metal parts. Nanocrystals currently produced in laboratories have been subjected to such processes, and they have retained their nanocrystalline properties, the engineers said.

Purdue has filed a patent application. The work has been funded by private donations and the Trask Pre-Seed Venture Fund, originally established in 1974 through an estate gift from Vern and Ramoth Trask, both Purdue alumni.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Dale Compton, (765) 494-0828, dcompton@ecn.purdue.edu
Srinivasan Chandrasekar, (765) 494-3623, chandy@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu/
http://www.mrs.org/publications/jmr/

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>