Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could bring widespread uses for ’nanocrystals’

19.08.2002


Researchers at Purdue University have made a surprising discovery that could open up numerous applications for metal "nanocrystals," or tiny crystals that are often harder, stronger and more wear resistant than the same materials in bulk form.

The research engineers have discovered that the coveted nanocrystals are contained in common scrap, the chips that are normally collected and melted down for reuse.

"Imagine, you have all of these bins full of chips, and they get melted down as scrap," said Srinivasan Chandrasekar, a professor of industrial engineering. "But, in some sense, the scrap could be more valuable pound-for-pound than the material out of which the part is made."



Nanocrystals might be used to make super-strong and long-lasting metal parts. The crystals also might be added to plastics and other metals to make new types of composite structures for everything from cars to electronics.

However, nanocrystals have been far too expensive and difficult to produce to be of any practical industrial or commercial use. The cost of making nanocrystals is at least $100 per pound, while nanocrystals of certain metals critical to industry cannot be made at all with present laboratory techniques, said Chandrasekar and Dale Compton, also a professor of industrial engineering at Purdue.

"Our contribution has been in developing a process that we think can be used to make these materials in large quantities at very low cost," Chandrasekar said. "The cost is expected to be no more than $1 per pound, plus the initial cost of the bulk material."

Findings will appear in the October issue of the Journal of Materials Research, published by the Materials Research Society. The paper was written by Travis L. Brown and Srinivasan Swaminathan, graduate students in Purdue’s School of Industrial Engineering, Chandrasekar and Compton, Alexander King, head of the School of Materials Engineering, and Kevin Trumble, a professor in the School of Materials Engineering.

One process now used to make nanocrystals in research labs involves heating a metal until it vaporizes and then collecting nanocrystals as the vaporized metal condenses onto a cold surface.

"The process is cumbersome, and if you want to make a pound of the material, or a few hundred pounds, it’s time-consuming," Chandrasekar said. "There are other techniques, but all of them have serious limitations."

Chandrasekar and Compton have discovered that the chips left over from machining are either entirely or primarily made of nanocrystals. The chips, which are shaved away from metals as they are machined, ordinarily are collected as scrap, melted down and reused. But melting down the chips turns nanocrystals back into ordinary bulk metals, removing their super strength, wear resistance and other unusual properties.

These chips, then, might be saved and processed for use in a wide range of products. Metal nanocrystals might be incorporated into car bumpers, making the parts stronger, or into aluminum, making it more wear resistant. Metal nanocrystals might be used to produce bearings that last longer than their conventional counterparts, new types of sensors and components for computers and electronic hardware.

Nanocrystals of various metals have been shown to be 100 percent, 200 percent and even as much as 300 percent harder than the same materials in bulk form. Because wear resistance often is dictated by the hardness of a metal, parts made from nanocrystals might last significantly longer than conventional parts.

"One of the really big advantages of this is that you can do it with almost any material," Compton said. "You can make nanocrystals of steels, tungsten, titanium alloys, nickel alloys."

The engineers have measured increased hardness in nanocrystals of copper, tool steel, stainless steel, two other types of steel alloys and iron.

"We have a lot of data demonstrating that these materials are nanocrystalline and that they have enhanced mechanical properties," Chandrasekar said.

Currently, though, it is either prohibitively expensive or impossible to make nanocrystals of many alloys, including steel alloys critical to industry and commercial products.

The Purdue researchers were led to their discovery by findings in scientific literature.

"There is some work in the literature that says if you introduce very large strains into a material it will be converted into nanocrystalline," Compton said. "In our research, we knew that there was strain being introduced at the point of the cutting tool."

The very strains caused by a cutting tool also produces nanocrystals about 100 nanometers in diameter, he said.

Nano is a prefix meaning one-billionth, so a nanometer is one-billionth of a meter, which is roughly 10 atoms wide.

Nanocrystals are not currently used to make products. However, experimental uses for nanocrystals include research aimed at developing high-performance bearings, such as those used for helicopter rotors; creating new types of high-strength, lightweight composite materials; making superior fuel-injection components for diesel engines; and producing new types of chemical catalysts.

Further research will be needed to determine whether the nanocrystals contained in scrap chips retain their desired properties after standard processing steps. Those steps include milling the chips to make powders and then compressing and heating the powders to make metal parts. Nanocrystals currently produced in laboratories have been subjected to such processes, and they have retained their nanocrystalline properties, the engineers said.

Purdue has filed a patent application. The work has been funded by private donations and the Trask Pre-Seed Venture Fund, originally established in 1974 through an estate gift from Vern and Ramoth Trask, both Purdue alumni.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Dale Compton, (765) 494-0828, dcompton@ecn.purdue.edu
Srinivasan Chandrasekar, (765) 494-3623, chandy@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu/
http://www.mrs.org/publications/jmr/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>