Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multimode Magnetic Field and Position Sensor from Oxford University

15.08.2002


Researchers at Oxford University’s Physics Department have developed an extraordinarily versatile proximity sensor for the detection of objects, composed of ferrous and non-ferrous metals, ceramics, glasses and plastics. This new device could be used as a position or speed sensor in automotive suspension, gearbox and engine management systems, amongst many other uses.

Researchers had identified the need for a relatively simple, but highly versatile proximity sensor to detect the motion of a wide variety of metals and non-metals. Existing proximity sensors tended to rely on magnetic induction, reluctance or Hall effect devices for their performance characteristics, which in automotive ignition sensors can lead to poor slow running performance.

The Oxford invention consists of an electronic oscillator circuit, an antenna, and a discrete sensor element, all of which could be encapsulated into a single compact unit. The sensor is able to detect any relative movement between the object to be sensed and the sensor by detecting the perturbation of the electromagnetic field generated by the antenna. The sensor is highly versatile and can simultaneously detect changes in the both the electric or magnetic properties of the target object. The sensor itself requires no adjustment to change modes and generates a signal regardless of which parameter of the target object is changing. Tests have shown that a wide range of materials can be detected, ranging from ferromagnets, non-ferromagnets and non-ferrous metals, to ceramics and plastics.



A prototype of the sensor, which has already been tested as an ignition-timing sensor on an internal combustion engine, offers a high sensitivity, high output unit. The new sensor is also capable of detecting rotating magnets, ferrous wheels and brake discs, non-magnetic metal-toothed wheels, and even plastic gearwheels. The shape of the output signal from the sensor device is square, well-defined, and speed independent, unlike the variable reluctance sensor it would replace. The sensor element can tolerate temperatures in excess of 1000 oC for long periods and has an excellent signal to noise ratio. In mass production it would be cheap to produce and compact in size.

Other potential applications for the sensor, which is the subject of a patent application from Isis Innovation, Oxford University’s technology transfer company, include detection of changes in the flow of inhomogeneous liquids, such as blood/saline, water-in-oil or oil-in-water mixtures. Companies interested in exploiting this technology in any number of applications are welcome to contact Isis Innovation.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/818.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>