Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Multimode Magnetic Field and Position Sensor from Oxford University


Researchers at Oxford University’s Physics Department have developed an extraordinarily versatile proximity sensor for the detection of objects, composed of ferrous and non-ferrous metals, ceramics, glasses and plastics. This new device could be used as a position or speed sensor in automotive suspension, gearbox and engine management systems, amongst many other uses.

Researchers had identified the need for a relatively simple, but highly versatile proximity sensor to detect the motion of a wide variety of metals and non-metals. Existing proximity sensors tended to rely on magnetic induction, reluctance or Hall effect devices for their performance characteristics, which in automotive ignition sensors can lead to poor slow running performance.

The Oxford invention consists of an electronic oscillator circuit, an antenna, and a discrete sensor element, all of which could be encapsulated into a single compact unit. The sensor is able to detect any relative movement between the object to be sensed and the sensor by detecting the perturbation of the electromagnetic field generated by the antenna. The sensor is highly versatile and can simultaneously detect changes in the both the electric or magnetic properties of the target object. The sensor itself requires no adjustment to change modes and generates a signal regardless of which parameter of the target object is changing. Tests have shown that a wide range of materials can be detected, ranging from ferromagnets, non-ferromagnets and non-ferrous metals, to ceramics and plastics.

A prototype of the sensor, which has already been tested as an ignition-timing sensor on an internal combustion engine, offers a high sensitivity, high output unit. The new sensor is also capable of detecting rotating magnets, ferrous wheels and brake discs, non-magnetic metal-toothed wheels, and even plastic gearwheels. The shape of the output signal from the sensor device is square, well-defined, and speed independent, unlike the variable reluctance sensor it would replace. The sensor element can tolerate temperatures in excess of 1000 oC for long periods and has an excellent signal to noise ratio. In mass production it would be cheap to produce and compact in size.

Other potential applications for the sensor, which is the subject of a patent application from Isis Innovation, Oxford University’s technology transfer company, include detection of changes in the flow of inhomogeneous liquids, such as blood/saline, water-in-oil or oil-in-water mixtures. Companies interested in exploiting this technology in any number of applications are welcome to contact Isis Innovation.

Jennifer Johnson | alfa
Further information:

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>