Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future advances of 20,000-year-old coatings technology detailed in upcoming Science magazine

09.08.2002


DuPont scientist identifies key issues in future coatings technology



Dr. Robert R. Matheson, Jr., one of the world’s foremost scientists on coatings - one of the oldest technologies known to humans - will have his scientific paper "20th- to 21st-Century Technological Challenges in Soft Coatings" featured in the upcoming edition of SCIENCE magazine.

As part of the Aug. 9 edition of SCIENCE, Dr. Matheson, a DuPont senior scientist, details the future of technological advances in coatings – one of the world’s most ancient technologies. Relatively soft coatings – comprising organic materials such as blood, eggs and extracts from plants – were in use more than 20,000 years ago. Coatings activity has been continuously practiced since then with gradually improving materials and application techniques. While technologies have advanced over time, the fundamental purposes of protecting or decorating surfaces have remained constant across all the centuries and cultures of civilization.


Matheson’s paper in SCIENCE examines change in soft coatings technology from its current state by identifying key issues that attract research and development efforts at the dawn of the 21st century. Matheson points out that today’s challenges are to decrease the environmental footprint and improve biological, mechanical and transport longevity, while minimizing the application requirements for soft coatings. Matheson notes that "a need exists in the automotive world for a painting system with lower environmental emissions (particularly volatile organic compounds, VOCs), improved resistance to environmental damage, outdoor durability, corrosion resistance, and improved application robustness. This need has been recently met with what might be considered an exemplary modern coatings system."

For example, the goal of reducing solvent emissions of automotive paint took a major leap forward this year with the introduction of DuPont "Super Solids" ultra-low emissions coatings technology at the DaimlerChrysler assembly plant in Newark, Del. The new Super Solids technology reduces volatile organic compound (VOC) emissions of the final protective clear coat applied to the Dodge Durango at the plant by 25 percent. DuPont has been able to accomplish this by increasing the solids content of the coating to 65 percent from an industry high-solids coatings standard of 50 percent solids and 50 percent solvent. At the same time, the technology offers a significant improvement in scratch and mar resistance to prolong the appearance of the paint finish over repeated washings.

The technology breakthrough is the result of fundamental molecular engineering research and the development of analytical equipment and tools to guide that research, according to Matheson. "The basis of the work is to change the nature of oligomers that are defined as small polymer chains with few structural units and give them structure by changing their reactivity with each other. We have demonstrated that this technology breakthrough will allow us to further increase the solids content of coatings to more than 80 percent," he said.

In 1923, DuPont provided consumers their first color options beyond black for mass-produced vehicles when it pioneered the first fast-drying lacquer paint. Today, DuPont continues to be the world’s leading supplier of automotive coatings. In North America, DuPont coatings were used on nine of the 10 top selling vehicles in 2001, as well as being one of the leading sellers in Europe.

"As a science company, DuPont has a rich history and bright future in coatings technology," said DuPont Chief Science and Technology Officer Dr. Thomas M. Connelly. "We are developing a number of products that have a lower environmental footprint. Our recent introduction of Super Solids technology is a good example of the direction we are heading in coatings technology. We are fortunate to have the coatings expertise of Bob Matheson and his team to help guide us moving forward."


A native of Cleveland, Ohio, Bob Matheson received simultaneous B.S. degrees in chemistry and mathematics from Michigan Technological University in 1973. He earned M.S. and Ph.D. degrees in physical chemistry and biophysics, respectively, from Cornell University and did two years of postdoctoral research in polymer physics at Stanford University. In 1980, he joined DuPont, serving in technical and supervisory positions in Central Research, and the Engineering Polymers and Coatings business units. Based in Troy, Mich., Matheson has been the technical manager for strategic technology in DuPont Performance Coatings since 1991. He has authored or co-authored 41 professional papers and holds two patents. Matheson is also the former editor of "Progress in Polymer Science" and former adjunct professor of chemistry at Oakland University in Rochester, Mich.

During 2002, DuPont is celebrating its 200th year of scientific achievement and innovation providing products and services that improve the lives of people everywhere. Based in Wilmington, Del., DuPont delivers science-based solutions for markets that make a difference in people’s lives in food and nutrition; health care; apparel; home and construction; electronics; and transportation.

Anthony Farina | EurekAlert!
Further information:
http://www.dupont.com/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>