Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future advances of 20,000-year-old coatings technology detailed in upcoming Science magazine

09.08.2002


DuPont scientist identifies key issues in future coatings technology



Dr. Robert R. Matheson, Jr., one of the world’s foremost scientists on coatings - one of the oldest technologies known to humans - will have his scientific paper "20th- to 21st-Century Technological Challenges in Soft Coatings" featured in the upcoming edition of SCIENCE magazine.

As part of the Aug. 9 edition of SCIENCE, Dr. Matheson, a DuPont senior scientist, details the future of technological advances in coatings – one of the world’s most ancient technologies. Relatively soft coatings – comprising organic materials such as blood, eggs and extracts from plants – were in use more than 20,000 years ago. Coatings activity has been continuously practiced since then with gradually improving materials and application techniques. While technologies have advanced over time, the fundamental purposes of protecting or decorating surfaces have remained constant across all the centuries and cultures of civilization.


Matheson’s paper in SCIENCE examines change in soft coatings technology from its current state by identifying key issues that attract research and development efforts at the dawn of the 21st century. Matheson points out that today’s challenges are to decrease the environmental footprint and improve biological, mechanical and transport longevity, while minimizing the application requirements for soft coatings. Matheson notes that "a need exists in the automotive world for a painting system with lower environmental emissions (particularly volatile organic compounds, VOCs), improved resistance to environmental damage, outdoor durability, corrosion resistance, and improved application robustness. This need has been recently met with what might be considered an exemplary modern coatings system."

For example, the goal of reducing solvent emissions of automotive paint took a major leap forward this year with the introduction of DuPont "Super Solids" ultra-low emissions coatings technology at the DaimlerChrysler assembly plant in Newark, Del. The new Super Solids technology reduces volatile organic compound (VOC) emissions of the final protective clear coat applied to the Dodge Durango at the plant by 25 percent. DuPont has been able to accomplish this by increasing the solids content of the coating to 65 percent from an industry high-solids coatings standard of 50 percent solids and 50 percent solvent. At the same time, the technology offers a significant improvement in scratch and mar resistance to prolong the appearance of the paint finish over repeated washings.

The technology breakthrough is the result of fundamental molecular engineering research and the development of analytical equipment and tools to guide that research, according to Matheson. "The basis of the work is to change the nature of oligomers that are defined as small polymer chains with few structural units and give them structure by changing their reactivity with each other. We have demonstrated that this technology breakthrough will allow us to further increase the solids content of coatings to more than 80 percent," he said.

In 1923, DuPont provided consumers their first color options beyond black for mass-produced vehicles when it pioneered the first fast-drying lacquer paint. Today, DuPont continues to be the world’s leading supplier of automotive coatings. In North America, DuPont coatings were used on nine of the 10 top selling vehicles in 2001, as well as being one of the leading sellers in Europe.

"As a science company, DuPont has a rich history and bright future in coatings technology," said DuPont Chief Science and Technology Officer Dr. Thomas M. Connelly. "We are developing a number of products that have a lower environmental footprint. Our recent introduction of Super Solids technology is a good example of the direction we are heading in coatings technology. We are fortunate to have the coatings expertise of Bob Matheson and his team to help guide us moving forward."


A native of Cleveland, Ohio, Bob Matheson received simultaneous B.S. degrees in chemistry and mathematics from Michigan Technological University in 1973. He earned M.S. and Ph.D. degrees in physical chemistry and biophysics, respectively, from Cornell University and did two years of postdoctoral research in polymer physics at Stanford University. In 1980, he joined DuPont, serving in technical and supervisory positions in Central Research, and the Engineering Polymers and Coatings business units. Based in Troy, Mich., Matheson has been the technical manager for strategic technology in DuPont Performance Coatings since 1991. He has authored or co-authored 41 professional papers and holds two patents. Matheson is also the former editor of "Progress in Polymer Science" and former adjunct professor of chemistry at Oakland University in Rochester, Mich.

During 2002, DuPont is celebrating its 200th year of scientific achievement and innovation providing products and services that improve the lives of people everywhere. Based in Wilmington, Del., DuPont delivers science-based solutions for markets that make a difference in people’s lives in food and nutrition; health care; apparel; home and construction; electronics; and transportation.

Anthony Farina | EurekAlert!
Further information:
http://www.dupont.com/

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>