Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State’s New Molecular Template Makes a Virtue of Variation

30.07.2002


Why would an uneven coating of gold on a silica surface excite any interest, much less earn cover-story honors in a respected scientific journal?



This uneven coating - nanoparticles of gold in a layer that changes from very dense to very sparse across a surface of selected molecules - will allow improvements in a wide range of processes and devices. And it’s the decreasing concentration of the coating and overlaying particles, the designed-in gradient, that has chemical engineers and physicists taking note.

"This material promises to be the first in a series with many applications in electronics, chemistry and the life sciences," said Rajendra Bhat, a doctoral student at North Carolina State University and principal author of the study published in the July 23 issue of Langmuir: The American Chemical Society Journal of Surfaces and Colloids.


What Bhat and his mentor - Dr. Jan Genzer, assistant professor of chemical engineering at NC State -have created is a surface coated with "sticky" molecules in a decreasing density. Like paint from a roller that starts out thick and gradually thins out, this sticky layer captures particles (in this case, gold) in the same pattern of decreasing density.

A kind of molecular template, this adhesive surface can be modified to attract different kinds of particles for different applications, all of them arranged in useful gradients. According to Genzer, the ability to vary and control the concentration of captured particles allows chemists and other scientists to devise sensors, filters, DNA-screening processes and, potentially, single-electron capacitors and transistors, among other possibilities.

Some components of fluids, for example, could pass through the gaps in the less-concentrated part of the gradient, but be blocked by the thicker concentration. Such filters could also be designed to detect or capture harmful viruses or toxins. The controlled distribution of
particles also allows rapid testing of potential catalysts - always in demand by chemical, pharmaceutical and petroleum industries - because numerous substances and variations in their amounts can be tested simultaneously.

Genzer and Bhat initially attached gold nanoparticles to their sticky molecular template because gold is conductive, biocompatible and well understood. But experiments with other particles, bonded to other kinds of surfaces, are under way. The NC State chemical engineers admit they haven’t thought of all the possibilities. "There are many more applications," said Bhat, "and we are open for collaboration."

Dr. Daniel Fischer, a physicist from the U.S. Department of Commerce’s National Institute of Standards and Technology, collaborated with Genzer and Bhat on the project. Their novel invention was tested at the National Synchrotron Light Source at Brookhaven National Laboratory. Funding for the project was provided by the National Science Foundation, the Department of Commerce and the U.S. Department of Energy.

Genzer’s research is also featured in the June 28 issue of Macromolecular Theory and Simulations.

Dr. Jan Genzer | EurekAlert!

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>