Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NC State’s New Molecular Template Makes a Virtue of Variation


Why would an uneven coating of gold on a silica surface excite any interest, much less earn cover-story honors in a respected scientific journal?

This uneven coating - nanoparticles of gold in a layer that changes from very dense to very sparse across a surface of selected molecules - will allow improvements in a wide range of processes and devices. And it’s the decreasing concentration of the coating and overlaying particles, the designed-in gradient, that has chemical engineers and physicists taking note.

"This material promises to be the first in a series with many applications in electronics, chemistry and the life sciences," said Rajendra Bhat, a doctoral student at North Carolina State University and principal author of the study published in the July 23 issue of Langmuir: The American Chemical Society Journal of Surfaces and Colloids.

What Bhat and his mentor - Dr. Jan Genzer, assistant professor of chemical engineering at NC State -have created is a surface coated with "sticky" molecules in a decreasing density. Like paint from a roller that starts out thick and gradually thins out, this sticky layer captures particles (in this case, gold) in the same pattern of decreasing density.

A kind of molecular template, this adhesive surface can be modified to attract different kinds of particles for different applications, all of them arranged in useful gradients. According to Genzer, the ability to vary and control the concentration of captured particles allows chemists and other scientists to devise sensors, filters, DNA-screening processes and, potentially, single-electron capacitors and transistors, among other possibilities.

Some components of fluids, for example, could pass through the gaps in the less-concentrated part of the gradient, but be blocked by the thicker concentration. Such filters could also be designed to detect or capture harmful viruses or toxins. The controlled distribution of
particles also allows rapid testing of potential catalysts - always in demand by chemical, pharmaceutical and petroleum industries - because numerous substances and variations in their amounts can be tested simultaneously.

Genzer and Bhat initially attached gold nanoparticles to their sticky molecular template because gold is conductive, biocompatible and well understood. But experiments with other particles, bonded to other kinds of surfaces, are under way. The NC State chemical engineers admit they haven’t thought of all the possibilities. "There are many more applications," said Bhat, "and we are open for collaboration."

Dr. Daniel Fischer, a physicist from the U.S. Department of Commerce’s National Institute of Standards and Technology, collaborated with Genzer and Bhat on the project. Their novel invention was tested at the National Synchrotron Light Source at Brookhaven National Laboratory. Funding for the project was provided by the National Science Foundation, the Department of Commerce and the U.S. Department of Energy.

Genzer’s research is also featured in the June 28 issue of Macromolecular Theory and Simulations.

Dr. Jan Genzer | EurekAlert!

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>