Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Mid-Infrared Lasers Show Doubled Efficiency

21.05.2008
Researchers at the Center for Quantum Devices at the McCormick School of Engineering at Northwestern University have recently doubled the efficiency of infrared lasers under the U.S. Defense Advanced Research Projects Agency’s Efficient Mid-wave Infrared Lasers (EMIL) program.

As these types of lasers become more efficient, they could be used in next-generation laser-based defense systems to fool incoming missile attacks or detect explosives or toxins in the atmosphere. Such lasers could also be used in commercial applications like trace chemical analysis, pollution monitoring, and free space communication.

But first, researchers must find the right laser sources at the right wavelengths. The mid-infrared wavelength range (3 to 5 microns) is especially useful for defense-based applications, and laser technology in this range has been targeted by the U.S. Defense Advanced Research Projects Agency (DARPA) as a strategic technology. The agency created the EMIL program to develop high efficiency, compact semiconductor laser sources with the hopes of demonstrating both high power (~1 W) and high power efficiency (50 percent) from an individual laser at room temperature. Besides demonstrating a significant energy savings over currently available sources, this technology (the quantum cascade laser) will also be more compact than any other laser technology for this wavelength range and operating temperature, with an active volume that is smaller than a human hair.

When the EMIL program started in March 2007, state-of-the-art mid-infrared semiconductor lasers, developed at Northwestern University, boasted power efficiencies on the order of five to 10 percent at room temperature. Over the past year, researchers at the Center for Quantum Devices, led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science, have gradually improved this figure of merit through changes to material quality, design and fabrication. Currently a record power efficiency of 22 percent has been realized at room temperature (25 degrees Celsius). In other words, for the same power output, two to four times less input power is required. Furthermore, when cooled, the power efficiency increases to 34 percent at 160 degrees Kelvin (-113 degrees Celsius), which is also a record for this type of device. Along with high efficiencies, high output powers have also been demonstrated, with multi-watt output powers up to room temperature. This work is as yet unpublished, but recent intermediate accomplishments have recently been made public in the March 10, 2008 issue of Applied Physics Letters.

With up to two more years remaining in this EMIL project, there is still a lot additional research and development to be done. At present, this remains basic research, and individual lasers are quite expensive. Once developed, however, this type of laser is a strong candidate for mass production like the shorter wavelength semiconductor lasers used in CD and DVD players. This will bring down the cost significantly and allow penetration of this laser and its’ applications to the commercial sector.

Razeghi’s work is being funded by DARPA’s EMIL program and the Office of Naval Research.

Kyle Delaney | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Process Engineering:

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>