Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Mid-Infrared Lasers Show Doubled Efficiency

Researchers at the Center for Quantum Devices at the McCormick School of Engineering at Northwestern University have recently doubled the efficiency of infrared lasers under the U.S. Defense Advanced Research Projects Agency’s Efficient Mid-wave Infrared Lasers (EMIL) program.

As these types of lasers become more efficient, they could be used in next-generation laser-based defense systems to fool incoming missile attacks or detect explosives or toxins in the atmosphere. Such lasers could also be used in commercial applications like trace chemical analysis, pollution monitoring, and free space communication.

But first, researchers must find the right laser sources at the right wavelengths. The mid-infrared wavelength range (3 to 5 microns) is especially useful for defense-based applications, and laser technology in this range has been targeted by the U.S. Defense Advanced Research Projects Agency (DARPA) as a strategic technology. The agency created the EMIL program to develop high efficiency, compact semiconductor laser sources with the hopes of demonstrating both high power (~1 W) and high power efficiency (50 percent) from an individual laser at room temperature. Besides demonstrating a significant energy savings over currently available sources, this technology (the quantum cascade laser) will also be more compact than any other laser technology for this wavelength range and operating temperature, with an active volume that is smaller than a human hair.

When the EMIL program started in March 2007, state-of-the-art mid-infrared semiconductor lasers, developed at Northwestern University, boasted power efficiencies on the order of five to 10 percent at room temperature. Over the past year, researchers at the Center for Quantum Devices, led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science, have gradually improved this figure of merit through changes to material quality, design and fabrication. Currently a record power efficiency of 22 percent has been realized at room temperature (25 degrees Celsius). In other words, for the same power output, two to four times less input power is required. Furthermore, when cooled, the power efficiency increases to 34 percent at 160 degrees Kelvin (-113 degrees Celsius), which is also a record for this type of device. Along with high efficiencies, high output powers have also been demonstrated, with multi-watt output powers up to room temperature. This work is as yet unpublished, but recent intermediate accomplishments have recently been made public in the March 10, 2008 issue of Applied Physics Letters.

With up to two more years remaining in this EMIL project, there is still a lot additional research and development to be done. At present, this remains basic research, and individual lasers are quite expensive. Once developed, however, this type of laser is a strong candidate for mass production like the shorter wavelength semiconductor lasers used in CD and DVD players. This will bring down the cost significantly and allow penetration of this laser and its’ applications to the commercial sector.

Razeghi’s work is being funded by DARPA’s EMIL program and the Office of Naval Research.

Kyle Delaney | EurekAlert!
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection

24.10.2016 | Health and Medicine

Microbe hunters discover long-sought-after iron-munching microbe

24.10.2016 | Life Sciences

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

More VideoLinks >>>