Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passive sensors remotely monitor temperature and stress

26.06.2002


The same material that makes the theft detectors go off in a department store when the salesperson forgets to remove the anti-theft tag, may make inexpensive, passive temperature and stress sensors for highways, concrete buildings and other applications possible, according to Penn State researchers.



"These materials typically cost about $100 a mile and each sensor is about an inch long," says Dr. Craig A. Grimes, associate professor of electrical engineering and member of Penn State’s Materials Research Institute. "Consequently, the sensors would cost just about nothing, or about a half cent apiece."

The material used in these sensors is an amorphous ribbon of alloy that is manufactured to be softly magnetic by quick cooling. One example is an iron, molybdenum, boron, silicon alloy. Magnetically soft materials have no strong fixed magnetic fields, even though they contain iron. In magnetically soft materials, the magnetic field switches back and forth depending on the environment and can generate many higher order harmonic frequencies.


"These magnetoelastic thin-film sensors are the magnetic analog of an acoustic bell," says Grimes. "When an externally applied magnetic field reaches the sensors, they ring like a bell, emitting both magnetic flux and acoustic energy with a characteristic resonant frequency." Just as a bell changes pitch and overtones when heated or cooled, the magnetoelastic thin-film changes magnetic response.

When a customer walks out of a department store with an anti-theft device still on a purchase, these metal strips set off an alarm because the sensors at the door sense the soft magnetic field. To use these strips as temperature and stress sensors, an activator must be passed near the sensor strips. Because the sensors operate passively and remotely, there are no wires or connectors required, so the sensors are simply and even randomly imbedded in the material to be sensed.

A simple loop that generates a magnetic field activates the sensor from a distance. This magnetic field is not blocked by the materials in the road surface or concrete and is not altered by any iron, such as rebar in construction concrete. Rebar does not have the magnetic properties needed to support the higher frequency harmonics. A figure-eight loop senses the strips’ response, reading the harmonics of the strips magnetic field. These harmonics are like the overtones of the bell and change as the environment of the strip changes.

On roadways, sensor strips embedded in the road surface could indicate when temperatures are low enough for salt application, but not too low for the salt to do any good. In the case of buildings involved in earthquakes or other structurally altering events, the sensors can indicate a change in the stresses inside the concrete and help to determine if the building is safe for occupancy.

The strips need to be coated with a polymer to avoid corrosion, although if corrosion is the property to be sensed, then the strips should be either left uncoated to corrode or coated with an analyte responsive layer.

In a recent issue of Applied Physics Letters, Grimes, with Dale M. Grimes, professor emeritus of electrical engineering, and Keat G. Ong, postdoctoral fellow at Materials Research Institute, say that "we found the temperature response of 40 sensors to be experimentally identical." These simple sensor strips provide a consistent temperature reading.

Because the sensors are softly magnetic, their orientation in the materials relative to the activatoris unimportant.

These sensors can also be immersed in water or other liquids and provide not only temperature but also viscosity, liquid density and surface tension. Because the sensors are so inexpensive, their use in a wide variety of materials, sensing a wide number of properties, may be possible in the future.

Grimes has a patent on this work, which was supported by NASA and National Science Foundation.

Andrea Elyse Messer | EurekAlert!

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>