Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passive sensors remotely monitor temperature and stress

26.06.2002


The same material that makes the theft detectors go off in a department store when the salesperson forgets to remove the anti-theft tag, may make inexpensive, passive temperature and stress sensors for highways, concrete buildings and other applications possible, according to Penn State researchers.



"These materials typically cost about $100 a mile and each sensor is about an inch long," says Dr. Craig A. Grimes, associate professor of electrical engineering and member of Penn State’s Materials Research Institute. "Consequently, the sensors would cost just about nothing, or about a half cent apiece."

The material used in these sensors is an amorphous ribbon of alloy that is manufactured to be softly magnetic by quick cooling. One example is an iron, molybdenum, boron, silicon alloy. Magnetically soft materials have no strong fixed magnetic fields, even though they contain iron. In magnetically soft materials, the magnetic field switches back and forth depending on the environment and can generate many higher order harmonic frequencies.


"These magnetoelastic thin-film sensors are the magnetic analog of an acoustic bell," says Grimes. "When an externally applied magnetic field reaches the sensors, they ring like a bell, emitting both magnetic flux and acoustic energy with a characteristic resonant frequency." Just as a bell changes pitch and overtones when heated or cooled, the magnetoelastic thin-film changes magnetic response.

When a customer walks out of a department store with an anti-theft device still on a purchase, these metal strips set off an alarm because the sensors at the door sense the soft magnetic field. To use these strips as temperature and stress sensors, an activator must be passed near the sensor strips. Because the sensors operate passively and remotely, there are no wires or connectors required, so the sensors are simply and even randomly imbedded in the material to be sensed.

A simple loop that generates a magnetic field activates the sensor from a distance. This magnetic field is not blocked by the materials in the road surface or concrete and is not altered by any iron, such as rebar in construction concrete. Rebar does not have the magnetic properties needed to support the higher frequency harmonics. A figure-eight loop senses the strips’ response, reading the harmonics of the strips magnetic field. These harmonics are like the overtones of the bell and change as the environment of the strip changes.

On roadways, sensor strips embedded in the road surface could indicate when temperatures are low enough for salt application, but not too low for the salt to do any good. In the case of buildings involved in earthquakes or other structurally altering events, the sensors can indicate a change in the stresses inside the concrete and help to determine if the building is safe for occupancy.

The strips need to be coated with a polymer to avoid corrosion, although if corrosion is the property to be sensed, then the strips should be either left uncoated to corrode or coated with an analyte responsive layer.

In a recent issue of Applied Physics Letters, Grimes, with Dale M. Grimes, professor emeritus of electrical engineering, and Keat G. Ong, postdoctoral fellow at Materials Research Institute, say that "we found the temperature response of 40 sensors to be experimentally identical." These simple sensor strips provide a consistent temperature reading.

Because the sensors are softly magnetic, their orientation in the materials relative to the activatoris unimportant.

These sensors can also be immersed in water or other liquids and provide not only temperature but also viscosity, liquid density and surface tension. Because the sensors are so inexpensive, their use in a wide variety of materials, sensing a wide number of properties, may be possible in the future.

Grimes has a patent on this work, which was supported by NASA and National Science Foundation.

Andrea Elyse Messer | EurekAlert!

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>