Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passive sensors remotely monitor temperature and stress

26.06.2002


The same material that makes the theft detectors go off in a department store when the salesperson forgets to remove the anti-theft tag, may make inexpensive, passive temperature and stress sensors for highways, concrete buildings and other applications possible, according to Penn State researchers.



"These materials typically cost about $100 a mile and each sensor is about an inch long," says Dr. Craig A. Grimes, associate professor of electrical engineering and member of Penn State’s Materials Research Institute. "Consequently, the sensors would cost just about nothing, or about a half cent apiece."

The material used in these sensors is an amorphous ribbon of alloy that is manufactured to be softly magnetic by quick cooling. One example is an iron, molybdenum, boron, silicon alloy. Magnetically soft materials have no strong fixed magnetic fields, even though they contain iron. In magnetically soft materials, the magnetic field switches back and forth depending on the environment and can generate many higher order harmonic frequencies.


"These magnetoelastic thin-film sensors are the magnetic analog of an acoustic bell," says Grimes. "When an externally applied magnetic field reaches the sensors, they ring like a bell, emitting both magnetic flux and acoustic energy with a characteristic resonant frequency." Just as a bell changes pitch and overtones when heated or cooled, the magnetoelastic thin-film changes magnetic response.

When a customer walks out of a department store with an anti-theft device still on a purchase, these metal strips set off an alarm because the sensors at the door sense the soft magnetic field. To use these strips as temperature and stress sensors, an activator must be passed near the sensor strips. Because the sensors operate passively and remotely, there are no wires or connectors required, so the sensors are simply and even randomly imbedded in the material to be sensed.

A simple loop that generates a magnetic field activates the sensor from a distance. This magnetic field is not blocked by the materials in the road surface or concrete and is not altered by any iron, such as rebar in construction concrete. Rebar does not have the magnetic properties needed to support the higher frequency harmonics. A figure-eight loop senses the strips’ response, reading the harmonics of the strips magnetic field. These harmonics are like the overtones of the bell and change as the environment of the strip changes.

On roadways, sensor strips embedded in the road surface could indicate when temperatures are low enough for salt application, but not too low for the salt to do any good. In the case of buildings involved in earthquakes or other structurally altering events, the sensors can indicate a change in the stresses inside the concrete and help to determine if the building is safe for occupancy.

The strips need to be coated with a polymer to avoid corrosion, although if corrosion is the property to be sensed, then the strips should be either left uncoated to corrode or coated with an analyte responsive layer.

In a recent issue of Applied Physics Letters, Grimes, with Dale M. Grimes, professor emeritus of electrical engineering, and Keat G. Ong, postdoctoral fellow at Materials Research Institute, say that "we found the temperature response of 40 sensors to be experimentally identical." These simple sensor strips provide a consistent temperature reading.

Because the sensors are softly magnetic, their orientation in the materials relative to the activatoris unimportant.

These sensors can also be immersed in water or other liquids and provide not only temperature but also viscosity, liquid density and surface tension. Because the sensors are so inexpensive, their use in a wide variety of materials, sensing a wide number of properties, may be possible in the future.

Grimes has a patent on this work, which was supported by NASA and National Science Foundation.

Andrea Elyse Messer | EurekAlert!

More articles from Process Engineering:

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>