Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passive sensors remotely monitor temperature and stress

26.06.2002


The same material that makes the theft detectors go off in a department store when the salesperson forgets to remove the anti-theft tag, may make inexpensive, passive temperature and stress sensors for highways, concrete buildings and other applications possible, according to Penn State researchers.



"These materials typically cost about $100 a mile and each sensor is about an inch long," says Dr. Craig A. Grimes, associate professor of electrical engineering and member of Penn State’s Materials Research Institute. "Consequently, the sensors would cost just about nothing, or about a half cent apiece."

The material used in these sensors is an amorphous ribbon of alloy that is manufactured to be softly magnetic by quick cooling. One example is an iron, molybdenum, boron, silicon alloy. Magnetically soft materials have no strong fixed magnetic fields, even though they contain iron. In magnetically soft materials, the magnetic field switches back and forth depending on the environment and can generate many higher order harmonic frequencies.


"These magnetoelastic thin-film sensors are the magnetic analog of an acoustic bell," says Grimes. "When an externally applied magnetic field reaches the sensors, they ring like a bell, emitting both magnetic flux and acoustic energy with a characteristic resonant frequency." Just as a bell changes pitch and overtones when heated or cooled, the magnetoelastic thin-film changes magnetic response.

When a customer walks out of a department store with an anti-theft device still on a purchase, these metal strips set off an alarm because the sensors at the door sense the soft magnetic field. To use these strips as temperature and stress sensors, an activator must be passed near the sensor strips. Because the sensors operate passively and remotely, there are no wires or connectors required, so the sensors are simply and even randomly imbedded in the material to be sensed.

A simple loop that generates a magnetic field activates the sensor from a distance. This magnetic field is not blocked by the materials in the road surface or concrete and is not altered by any iron, such as rebar in construction concrete. Rebar does not have the magnetic properties needed to support the higher frequency harmonics. A figure-eight loop senses the strips’ response, reading the harmonics of the strips magnetic field. These harmonics are like the overtones of the bell and change as the environment of the strip changes.

On roadways, sensor strips embedded in the road surface could indicate when temperatures are low enough for salt application, but not too low for the salt to do any good. In the case of buildings involved in earthquakes or other structurally altering events, the sensors can indicate a change in the stresses inside the concrete and help to determine if the building is safe for occupancy.

The strips need to be coated with a polymer to avoid corrosion, although if corrosion is the property to be sensed, then the strips should be either left uncoated to corrode or coated with an analyte responsive layer.

In a recent issue of Applied Physics Letters, Grimes, with Dale M. Grimes, professor emeritus of electrical engineering, and Keat G. Ong, postdoctoral fellow at Materials Research Institute, say that "we found the temperature response of 40 sensors to be experimentally identical." These simple sensor strips provide a consistent temperature reading.

Because the sensors are softly magnetic, their orientation in the materials relative to the activatoris unimportant.

These sensors can also be immersed in water or other liquids and provide not only temperature but also viscosity, liquid density and surface tension. Because the sensors are so inexpensive, their use in a wide variety of materials, sensing a wide number of properties, may be possible in the future.

Grimes has a patent on this work, which was supported by NASA and National Science Foundation.

Andrea Elyse Messer | EurekAlert!

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>