Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INEEL, California groups unveil unique natural gas liquefaction facility

24.06.2002


A first-of-its-kind, small-scale natural gas liquefaction facility designed by scientists at the U.S. Department of Energy’s Idaho National Engineering and Environmental Laboratory was unveiled today by Pacific Gas and Electric Company officials in Sacramento, Calif.



Other significant partners in the pioneering liquefied natural gas (LNG) facility effort include the California Energy Commission, Sacramento Air Quality Management District, SoCal Gas Company and South Coast Air Quality Management District.

The INEEL developed the patented technology used in the small-scale liquefier, and PG&E was responsible for installation. "The invention that was required to make this new liquefier is expected to revolutionize the liquefaction industry," said Bruce Wilding, INEEL Natural Gas Products program manager.


One of the revolutionary aspects of the new technology is that it dramatically reduces an LNG plant’s size and cost. Standard LNG plants cost about $10 million to build, and occupy 5- to 6-acre sites. When this prototype technology is fully developed, plant construction cost is expected to be around $450,000, and only about 240 square feet of space will be required.

The liquefier is one achievement from DOE’s joint research and development with the growing clean energy technology industry. "This project is directed at obtaining relief from oil dependence by diversifying our transportation energy supply," said Mike Anderson, DOE-Idaho Energy R&D project manager. Liquefied natural gas from this plant can be used as a clean, alternative fuel in heavy-duty trucks and transit buses.

"Pacific Gas and Electric Company is extremely proud to unveil this quantum-leap technology that is the pathway to a clean air future," said Steve McCarthy, director of Customer Energy management for PG&E. Reducing emissions from heavy-duty vehicles is an essential part of achieving cleaner air. The use of clean-burning LNG is a key component to making this possible.

The new technology is designed to draw natural gas from an existing pipeline at a pressure letdown station, liquefy the natural gas and store it until it is used, trucked away or re-injected into the pipeline. Because of its community-friendly design and low cost, a number of facilities can easily be placed close to clean-fuel customers. Customers could include public entities such as city, county, transit, school district and waste removal fleets, as well as private fleets, such as those used by supermarkets and delivery companies.

The small-scale plant is easily transportable, offering numerous application advantages that no other technology can currently match, including providing emergency services to prevent gas service disruptions or allowing faster gas service recovery.

The plant will now begin a three- to six-month startup and operational testing phase.


###
The INEEL is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy’s missions in national security, energy security, environment and science. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

INEEL media contact: Teri Ehresman, 208-526-7785, ehr@inel.gov (cell phone on Monday, June 24 – 208-520-6252) PG&E media contact: Jann Taber, 916-923-7053, JMTi@pge.com

Teri Ehresman | EurekAlert!

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>