Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INEEL, California groups unveil unique natural gas liquefaction facility

24.06.2002


A first-of-its-kind, small-scale natural gas liquefaction facility designed by scientists at the U.S. Department of Energy’s Idaho National Engineering and Environmental Laboratory was unveiled today by Pacific Gas and Electric Company officials in Sacramento, Calif.



Other significant partners in the pioneering liquefied natural gas (LNG) facility effort include the California Energy Commission, Sacramento Air Quality Management District, SoCal Gas Company and South Coast Air Quality Management District.

The INEEL developed the patented technology used in the small-scale liquefier, and PG&E was responsible for installation. "The invention that was required to make this new liquefier is expected to revolutionize the liquefaction industry," said Bruce Wilding, INEEL Natural Gas Products program manager.


One of the revolutionary aspects of the new technology is that it dramatically reduces an LNG plant’s size and cost. Standard LNG plants cost about $10 million to build, and occupy 5- to 6-acre sites. When this prototype technology is fully developed, plant construction cost is expected to be around $450,000, and only about 240 square feet of space will be required.

The liquefier is one achievement from DOE’s joint research and development with the growing clean energy technology industry. "This project is directed at obtaining relief from oil dependence by diversifying our transportation energy supply," said Mike Anderson, DOE-Idaho Energy R&D project manager. Liquefied natural gas from this plant can be used as a clean, alternative fuel in heavy-duty trucks and transit buses.

"Pacific Gas and Electric Company is extremely proud to unveil this quantum-leap technology that is the pathway to a clean air future," said Steve McCarthy, director of Customer Energy management for PG&E. Reducing emissions from heavy-duty vehicles is an essential part of achieving cleaner air. The use of clean-burning LNG is a key component to making this possible.

The new technology is designed to draw natural gas from an existing pipeline at a pressure letdown station, liquefy the natural gas and store it until it is used, trucked away or re-injected into the pipeline. Because of its community-friendly design and low cost, a number of facilities can easily be placed close to clean-fuel customers. Customers could include public entities such as city, county, transit, school district and waste removal fleets, as well as private fleets, such as those used by supermarkets and delivery companies.

The small-scale plant is easily transportable, offering numerous application advantages that no other technology can currently match, including providing emergency services to prevent gas service disruptions or allowing faster gas service recovery.

The plant will now begin a three- to six-month startup and operational testing phase.


###
The INEEL is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy’s missions in national security, energy security, environment and science. The INEEL is operated for the DOE by Bechtel BWXT Idaho, LLC.

INEEL media contact: Teri Ehresman, 208-526-7785, ehr@inel.gov (cell phone on Monday, June 24 – 208-520-6252) PG&E media contact: Jann Taber, 916-923-7053, JMTi@pge.com

Teri Ehresman | EurekAlert!

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>