Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Additive Manufacturing of metal products with functionally graded material composition

10.04.2008
Development of the Metal Printing Process, MPP, for Additive Manufacturing of metal products with functionally graded material composition

As a result of a multi-million Euro project, a high speed Metal Printing Process (MPP) for the production of metal products with functionally graded materials has been developed.


Custom-Fit is an industry led project funded by the EC under Sixth Framework Programme, with the aim of creating a fully integrated system for the design, production and supply of individualised products using Rapid Manufacturing technologies. One objective of the project is to develop new production systems based on Additive Manufacturing technology for the manufacturing of customised products. The Metal Printing Process (MPP) is one of the processes developed under the project by the Norwegian research institute SINTEF.

MPP aims to become the equivalent of a high speed 3D-printer that produces three-dimensional, solid metal, freeform objects directly from powder materials. This technique is based on the process principles of xerographic printers, (such as for example laser -or LED- printers) and the proven technology of conventional powder metallurgy. The MPP process approach uses the same fundamental principles to build solid objects on a layer-by-layer basis. Layers of powder materials are generated by attracting different metal- and/or ceramic powders to their respective position on a charged pattern on a photoreceptor by means of an electrostatic field. The attracted layer is transferred to a punch and transported to the consolidation unit where each layer of part material is sintered onto the previous by pressure and heat. The procedure is repeated layer-by-layer until the three-dimensional object is fully formed and consolidated.

MPP has the ability to print different powders within the same layer and progressively change from one material to another, i.e. producing a functionally graded material. In addition to this, MPP has been developed to work with any commercially available powders. This ability to fabricate products with a wide range of materials incorporated opens the possibility to produce unique material combinations and microstructures.

This new technology opens up a whole new world for producing metal products with better mechanical structure. Roald Karlsen, senior scientist in SINTEF who is heading the development of MPP, says, “The areas of application are only limited by our imagination. When the technology is fully available new applications and needs will arise. Some relevant applications for the MPP might be: production of customized orthopedic implants with functionally graded properties, fabrication of spare parts on demand, tools with conformal cooling channels and embedded sensor technology, high temperature fuel cells, micro-parts from nano-scale powders, etc.”

About Custom-Fit:
Custom-Fit is an industry led project to investigate the possibility of moving towards knowledge based manufacturing and customised production through integration of knowledge in Rapid Manufacturing, Information Technology and Material Science. Funded under the Sixth Framework Programme, the project involves 30 partners from around Europe. The aim is to create a fully integrated system for the design, production and supply of individualised products. It has targeted product for implementing the new technology, including motorcycle seats, helmets, implants and prosthesis.
For all media enquiries, please contact:
Suny Martínez or Luisa Marín
AIJU
Ingeniería de Producto y Ensayos
Avda. de la Industria, 23
03440 IBI (Alicante) Spain
Telephone number: +34 965554475
Fax number: +34 965554490
e-mail: customfit@aiju.info

Suny Martínez/ Luisa Marín | AIJU
Further information:
http://www.aiju.info
http://www.custom-fit.org

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>