Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Service Life Simulation on Plastics under the Influence of Aggressive Fluids

01.04.2008
Components in the vehicle engine compartment must withstand high temperatures, mechanical vibration and the effect of aggressive substances such as fuel, brake fluid or engine oil.

Until now, the durability of plastic components has been extremely difficult to assess, considering the variety of influencing factors. This is particularly important for critical safety components, whose failure involves a significant danger potential and subsequent liability risks.

At the "JEC" trade show held from 1 to 4 April in Paris, at its stand U74, hall 1.3, Fraunhofer LBF will present solutions for simulating the service life of components made from plastic and other composite materials.

The number and usage of components made from plastic and composite materials has been growing steadily throughout the last few years. Until now, reliable, material-specific testing methods and rating concepts for these plastic components, enabling an assessment of their expected service life, have not been available. Within the framework of a Wing Project of the German Federal Ministry for Education and Research lead by Robert Bosch GmbH, engineers are currently working on new material technologies. Research scientists at the Fraunhofer Institute for Durability and System Reliability LBF in Darmstadt are developing a simulation method which will enable the reliable assessment of fatigue and ageing of plastic components under various ambient influences. Using specimens made from thermoplastic materials and resembling the actual components, researchers have investigated the behaviour of the materials in laboratory tests, as a function of material, geometry, manufacturing process and various environmental factors (such as temperature, fuel, or oil). These parameters are critical to strength, load-carrying capability and service life of the materials.

The effect of these combined parameters on material fatigue can subsequently be shown in a numerical simulation of the components. "First of all we analyse the vibratory strength of plastic specimens immersed in an oil bath, by introducing cyclic loads", explains Andreas Büter, Head of Department at Fraunhofer LBF. "Depending on the load at which specimen fatigue or fracture occurs, the fatigue strength, i.e. the relationship between the cyclic load applied and the maximum permitted number of vibrations can be calculated." On the basis of the results obtained, a diagram called Wöhler curve is determined by the engineers, which enables a statistical assessment of the fatigue life of a component.

How a fuel rail, for example, will withstand engine vibrations under simultaneous contact with fuel, is simulated on the basis of the results obtained by means of a numerical model of the component. "We calculate the stress and strain occurring in the material at various loads", explains Büter. "We know from experiments the stresses the material can withstand without damage, and at which strains damage occurs. Hence we can assess the service life of plastic components with maximum reliability".

The purpose of the simulation models, which are adapted to the specific material in hand, is to enable designers to take into account ageing processes and the effects of various ambient factors on plastic components at an early stage in the development phase - similar to metal components. This will reduce the cost and time involved in design modifications and adaptation of shape.

Scientific contact at the show:
Dr. Andreas Büter, Julia Hartmann
mobile +49 172 6184202
julia.hartmann@lbf.fraunhofer.de

Anke Zeidler-Finsel | Fraunhofer Gesellschaft
Further information:
http://www.lbf.fhg.de/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>