Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering research at Loughborough University could reduce mobile phone emissions into the body by up to 85%

12.06.2002


Loughborough University’s Centre for Mobile Communications Research (CMCR) has made some major breakthroughs in its antenna technology that could enable safer communication for all.

Using their work associated with GPS (Global Positioning System) technology, researchers have managed to reduce emissions into the body by as much as 85%. The CMCR achieved its breakthrough in antenna designs through innovative laser technology and super computing modelling techniques. This puts the University in an excellent position to be the leaders in low SAR (Specific Absorption Rate) solution providers in the UK for the Telecom industry. SAR is the parameter that measures the amount of radiation from mobile phone handsets absorbed by human tissue.

The Centre’s vital research to develop the definite low SAR mobile phone antenna has been recognised with grants from the Engineering and Physical Sciences Research Council, and it has already gained over £1 million in contracts covering many aspects of mobile communications such as GSM, 3G and BluetoothTM.



Professor Yiannis Vardaxoglou, head of the CMCR, commented, “The issue of mobile phone health is escalating rapidly and mobile handsets are now required to clearly state their SAR rating. Therefore it’s not surprising that a number of interested parties are examining ways of reducing SAR levels. For this reason we have made major investments in facilities such as super computers and a Dosimetric Assessment System which enables the radiation absorbed by a ‘phantom head’ to be accurately measured.”

One company which is outsourcing research work to the CMCR is Wellingborough-based miniature antenna manufacturer Sarantel as the company’s CEO, Barrie Foley, confirmed, “The CMCR at Loughborough University has some of the best super computer Radio Frequency modelling facilities in Europe. Design evaluations, which previously took many weeks, can now be completed in just a few days and so it makes a lot of sense for us to capitalise on their outstanding experience and facilities. This technology is real and can be delivered to the market, unlike many claims by various organisations in the past.”

Sarantel and Loughborough have previously worked together on antenna designs for GPS handsets based on the company’s PowerHelix™ technology. These antennas use helical copper tracks etched onto a ceramic puck and are finding wide acceptance with GPS handset and wireless location device manufacturers. They offer many technical benefits such as a low ‘Near Field’ which enables weak GPS satellite signals to be captured even when the equipment is in close proximity to buildings or the body of the user.

A possible by-product of the work done with Sarantel is the reduction of mobile phone antenna Near Fields in order to reduce the SAR rating of handsets. Professor Vardaxoglou explained, “If the near field could be reduced to a few millimetres with a high level of predictability, then a low SAR antenna could be a real possibility.”A selection of quality, high resolution photographs of mobile phone antenna production at Sarantel exploiting CMCR research are available to down load from the Gallery at http://www.lboro.ac.uk/departments/el/research/cmcr

Anna Seddon | alfa

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>