Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering research at Loughborough University could reduce mobile phone emissions into the body by up to 85%

12.06.2002


Loughborough University’s Centre for Mobile Communications Research (CMCR) has made some major breakthroughs in its antenna technology that could enable safer communication for all.

Using their work associated with GPS (Global Positioning System) technology, researchers have managed to reduce emissions into the body by as much as 85%. The CMCR achieved its breakthrough in antenna designs through innovative laser technology and super computing modelling techniques. This puts the University in an excellent position to be the leaders in low SAR (Specific Absorption Rate) solution providers in the UK for the Telecom industry. SAR is the parameter that measures the amount of radiation from mobile phone handsets absorbed by human tissue.

The Centre’s vital research to develop the definite low SAR mobile phone antenna has been recognised with grants from the Engineering and Physical Sciences Research Council, and it has already gained over £1 million in contracts covering many aspects of mobile communications such as GSM, 3G and BluetoothTM.



Professor Yiannis Vardaxoglou, head of the CMCR, commented, “The issue of mobile phone health is escalating rapidly and mobile handsets are now required to clearly state their SAR rating. Therefore it’s not surprising that a number of interested parties are examining ways of reducing SAR levels. For this reason we have made major investments in facilities such as super computers and a Dosimetric Assessment System which enables the radiation absorbed by a ‘phantom head’ to be accurately measured.”

One company which is outsourcing research work to the CMCR is Wellingborough-based miniature antenna manufacturer Sarantel as the company’s CEO, Barrie Foley, confirmed, “The CMCR at Loughborough University has some of the best super computer Radio Frequency modelling facilities in Europe. Design evaluations, which previously took many weeks, can now be completed in just a few days and so it makes a lot of sense for us to capitalise on their outstanding experience and facilities. This technology is real and can be delivered to the market, unlike many claims by various organisations in the past.”

Sarantel and Loughborough have previously worked together on antenna designs for GPS handsets based on the company’s PowerHelix™ technology. These antennas use helical copper tracks etched onto a ceramic puck and are finding wide acceptance with GPS handset and wireless location device manufacturers. They offer many technical benefits such as a low ‘Near Field’ which enables weak GPS satellite signals to be captured even when the equipment is in close proximity to buildings or the body of the user.

A possible by-product of the work done with Sarantel is the reduction of mobile phone antenna Near Fields in order to reduce the SAR rating of handsets. Professor Vardaxoglou explained, “If the near field could be reduced to a few millimetres with a high level of predictability, then a low SAR antenna could be a real possibility.”A selection of quality, high resolution photographs of mobile phone antenna production at Sarantel exploiting CMCR research are available to down load from the Gallery at http://www.lboro.ac.uk/departments/el/research/cmcr

Anna Seddon | alfa

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>