Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering research at Loughborough University could reduce mobile phone emissions into the body by up to 85%

12.06.2002


Loughborough University’s Centre for Mobile Communications Research (CMCR) has made some major breakthroughs in its antenna technology that could enable safer communication for all.

Using their work associated with GPS (Global Positioning System) technology, researchers have managed to reduce emissions into the body by as much as 85%. The CMCR achieved its breakthrough in antenna designs through innovative laser technology and super computing modelling techniques. This puts the University in an excellent position to be the leaders in low SAR (Specific Absorption Rate) solution providers in the UK for the Telecom industry. SAR is the parameter that measures the amount of radiation from mobile phone handsets absorbed by human tissue.

The Centre’s vital research to develop the definite low SAR mobile phone antenna has been recognised with grants from the Engineering and Physical Sciences Research Council, and it has already gained over £1 million in contracts covering many aspects of mobile communications such as GSM, 3G and BluetoothTM.



Professor Yiannis Vardaxoglou, head of the CMCR, commented, “The issue of mobile phone health is escalating rapidly and mobile handsets are now required to clearly state their SAR rating. Therefore it’s not surprising that a number of interested parties are examining ways of reducing SAR levels. For this reason we have made major investments in facilities such as super computers and a Dosimetric Assessment System which enables the radiation absorbed by a ‘phantom head’ to be accurately measured.”

One company which is outsourcing research work to the CMCR is Wellingborough-based miniature antenna manufacturer Sarantel as the company’s CEO, Barrie Foley, confirmed, “The CMCR at Loughborough University has some of the best super computer Radio Frequency modelling facilities in Europe. Design evaluations, which previously took many weeks, can now be completed in just a few days and so it makes a lot of sense for us to capitalise on their outstanding experience and facilities. This technology is real and can be delivered to the market, unlike many claims by various organisations in the past.”

Sarantel and Loughborough have previously worked together on antenna designs for GPS handsets based on the company’s PowerHelix™ technology. These antennas use helical copper tracks etched onto a ceramic puck and are finding wide acceptance with GPS handset and wireless location device manufacturers. They offer many technical benefits such as a low ‘Near Field’ which enables weak GPS satellite signals to be captured even when the equipment is in close proximity to buildings or the body of the user.

A possible by-product of the work done with Sarantel is the reduction of mobile phone antenna Near Fields in order to reduce the SAR rating of handsets. Professor Vardaxoglou explained, “If the near field could be reduced to a few millimetres with a high level of predictability, then a low SAR antenna could be a real possibility.”A selection of quality, high resolution photographs of mobile phone antenna production at Sarantel exploiting CMCR research are available to down load from the Gallery at http://www.lboro.ac.uk/departments/el/research/cmcr

Anna Seddon | alfa

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>