Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Treatment Transforms MDF Producing Startling Image of Rare Wood Grains

10.03.2008
Researchers at WMG at the University of Warwick have devised a way of using a laser that transforms MDF giving it a surface finish that looks like some of the most expensive wood grains.

The “LaserCoat” research project in a collaborative research effort consisting of eight academic, research and commercial organisations and part-financed by the Technology Strategy Board.

University of Warwick WMG researcher Dr Ken Young said:

“MDF is a superb and highly versatile material. It’s easy to work with and cheap. It is usually made from waste material so it is much kinder to the environment than using more real wood. But normally it looks rather dull in its raw state. Until now there has been no way to liven it up other than painting it.”

“Using lasers to produce a wood grain in MDF could help bring a more natural quality into homes and businesses without the financial and environmental cost of having to use new wood.”

The technology also has great potential for commercial use as it is very hardwearing and can be used for flooring or other applications where cost is an issue but where looks are important too. It can mimic a vast range of real wood grains, it can produce logos, decoration, or even coloured and shaped decorative surfaces using a powder coating version of this new laser technology.

Mick Toner, Factory Manager of Howarth Windows & Doors sees significant benefits from the new technology for his business

“We would love to use MDF for the glazing beads in doubling glazing but customers do not like the look of raw MDF. This LaserCoat technology will provide a grained look that will delight our customers, give us much more manufacturing flexibility and cut the cost of the raw materials four fold”

“MDF is also an ideal material for providing the thermal insulation required for modern doors. Our customers are increasing using translucent coatings on their doors which are not aesthetically pleasing on MDF panels – the LaserCoat technology cuts through this problem providing an attractive surface for MDF no matter the coating used”

The ‘LaserCoat’ project is supported by the Furniture Industry Research Association and the Timber Research and Development Association. It is part-funded by the Department for Business, Enterprise and Regulatory Reform.

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/icast/archive/s2week16/mdf/
http://www2.warwick.ac.uk/newsandevents/pressreleases/laser_treatment_transforms/
http://www2.warwick.ac.uk/newsandevents/pressreleases/laser_treatment_transforms/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>