Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Technology Helps Conserve Paintings

Experts from the University of the Philippines Diliman are currently working on the development of an optical imaging technique that would provide quantitative analysis of artworks which may guide curators, conservators and researchers.

Museums and art galleries are repositories of treasured artworks created by notable artists throughout history. These artworks are archived, conserved and studied for they dictate artistic styles that would aid in understanding history and expanding the existing knowledge in art.

Unfortunately, defects are inevitable especially in old pieces due to human interventions and changing environmental conditions. In the Philippines today, no current quantitative procedures are used in order to closely analyze paintings and accurately determine qualities and defects. The only bases for authentication, archiving, and restoration are history, material, style of the painter, and other visually identifiable characteristics of the artwork.

Motivated by the need to restore, preserve and contribute to the study of Philippine Art, experts from the University of the Philippines, Diliman (UPD) are currently working on a project funded by the Office of the Chancellor entitled “Art Beyond Appearances: Physics Looks into Paintings.” The Art Analysis team led by Dr. Ana Maria Theresa Labrador has collaborated with the Physics team led by Dr. Maricor Soriano to develop an optical imaging technique that would provide quantitative analysis of artworks which may guide curators, conservators and researchers.

The ongoing research uses artworks in the Jorge B. Vargas Museum and Filipiniana Research Center as test subjects. Examples are Fernando Amorsolo’s paintings like Malacañang by the River (Oil on canvas, 1948). Using only a digital camera and locally developed software, the Physics team can perform Spectral Imaging and Photometric Stereo for the measurement and analysis of reflectance spectra and texture of paintings, respectively. With Spectral Imaging, the spectral reflectance that shows the characteristics of colors are determined, thus aiding in the documentation of the color use of selected Filipino artists and making possible accurate color reproduction for inpainting restoration work. Determining the surface topography of oil paintings through Photometric Stereo facilitates in the detection of defects (discolorations, cracks, deformations, etc.) and canvas weaves. Through multiple images of the surface taken at different light source locations, a three-dimensional visualization of the surface structure is created, thus achieving a clear view of the imperfections of the painting surface.

Discolorations and defects in oil on canvases are usually due to the changes in temperature and relative humidity within the museum or any storage location. There are existing guidelines for the conservation of paintings from the West, but the different climate in the Philippines, where temperature and relative humidity are higher, is significant to the conservation process and thus, should be considered in the study. Through the help of a team from the Department of Electrical and Electronics Engineering (EEE) led by Marc Caesar Talampas, a wireless sensor network has been developed and installed in a selected location inside the Vargas Museum to monitor and control its temperature and relative humidity. Such monitoring and control is done through the SHT15 sensor from Sensirion, which has a serial interface and consumes very little power; it is connected to a Z8! Encore microcontroller readily available at the Instrumentation, Robotics and Control Laboratory in EEE. Through these processes, the right environmental condition for the paintings is maintained and the conservation methods of the museum are improved.

Working on the results gathered by the Physics team on the hidden signatures of painters and the artworks’ color and texture are the members of the Arts Analysis team. They study implications of such findings to the preconceived notions in the history of art including the exposition on the “Philippine Light” (a product of a painting technique called backlighting) which according to artists is seen in most of Fernando Amorsolo’s paintings. They also research on the paintings’ pigments, materials used and their sources, and review other related studies.

Dr. Labrador reports that this project has been featured in different media for public awareness such as in the UP Newsletter, Manila Bulletin, Business World, and on the evening news of RPN 9. More events are being planned to promote the study. According to Dr. Labrador, the project not only aims to develop tools to study and preserve masterpieces, but also to establish interdisciplinary courses on preventive conservation, color analysis, monitoring of environments of collections, and art historical construction.

Office of the Vice Chancellor | ResearchSEA
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>