Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global aluminium waste headache solved

31.05.2002


An Australian research team has solved one of the world’s big industrial waste headaches - what to do with spent pot lining (SPL) from aluminium smelters.


In a major advance for sustainable mineral production, the "Alcoa Portland SPL Process" developed jointly by Portland Aluminium, Alcoa, Ausmelt and CSIRO renders the hazardous waste harmless and at the same time produces two commercial by-products.

Aluminium smelters worldwide produce about half a million tones a year of the toxic byproduct which, in many cases, simply has to be stored on site because local regulations prevent its disposal in landfill.

Now the Australian breakthrough has turned what was an intractable problem into economically useful products.



Aluminium fluoride produced by the process will directly replace a portion of the expensive imported aluminium fluoride used in the smelting process - significantly reducing purchase costs for this material.

Another product, "synthetic sand", has received Environment Protection Authority approval for unrestricted use and is expected to be used road-making and concrete production.

SPL project manager, Mr Ken Mansfield, says the company is delighted with the outcome.

"Treating SPL is a costly process, but achieving such an environmental breakthrough, where the by-products partially offset the processing costs, is an outstanding result."

Mr Mansfield said Portland Aluminium had 75,000 tonnes of SPL stored safely in secure containers and specially ventilated buildings. "But we couldn’t go on storing it for ever, so in 1989 we started seeking suitable treatment options. That was when we approached CSIRO, to comb the world for a process that would meet our environmental, technical and economic goals".

"When it became clear there wasn’t anything suitable worldwide, we began our own joint research, which led in 1992 to our trialling the Ausmelt technology."

Ausmelt Limited was established in the early 1980s by a former CSIRO researcher Dr John Floyd to commercialise his submerged-lance smelting technology - SIROSMELT.

SIROSMELT is a fast and efficient method of processing nonferrous metals based on a submerged combustion process. Fuel and gases are injected through a lance, the tip of which is submerged into the molten material in the furnace. The fuel combusts at the tip, heating and melting the incoming feed materials, and the injected gases cause vigorous agitation and rapid reactions.

Globally there are now 30 smelting plants using the core SIROSMELT technology which are used primarily for copper, zinc, lead and tin smelting which process more than 3 million tonnes per year of metallic concentrates.

In the processing of spent pot lining, typically operating at around 1250 degrees Celsius, the submerged lance technology has proved ideal for releasing the fluorine contained in the spent pot lining for conversion to other products. The process also destroys any cyanide that may be present.

The Portland Aluminium SPL team had to overcome many technical challenges, including finding a way to produce aluminium fluoride from the gases liberated by the process. Later, when the pilot reprocessing plant began operating, problems had to be solved in handling the gases and by-products.

The success of the process has attracted world attention and is being considered by other aluminium smelting organisations for the effective disposal of SPL.

Rosie Schmedding | EurekAlert
Further information:
http://www.ausimm.com.au/green2002/html/program.html

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>