Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global aluminium waste headache solved

31.05.2002


An Australian research team has solved one of the world’s big industrial waste headaches - what to do with spent pot lining (SPL) from aluminium smelters.


In a major advance for sustainable mineral production, the "Alcoa Portland SPL Process" developed jointly by Portland Aluminium, Alcoa, Ausmelt and CSIRO renders the hazardous waste harmless and at the same time produces two commercial by-products.

Aluminium smelters worldwide produce about half a million tones a year of the toxic byproduct which, in many cases, simply has to be stored on site because local regulations prevent its disposal in landfill.

Now the Australian breakthrough has turned what was an intractable problem into economically useful products.



Aluminium fluoride produced by the process will directly replace a portion of the expensive imported aluminium fluoride used in the smelting process - significantly reducing purchase costs for this material.

Another product, "synthetic sand", has received Environment Protection Authority approval for unrestricted use and is expected to be used road-making and concrete production.

SPL project manager, Mr Ken Mansfield, says the company is delighted with the outcome.

"Treating SPL is a costly process, but achieving such an environmental breakthrough, where the by-products partially offset the processing costs, is an outstanding result."

Mr Mansfield said Portland Aluminium had 75,000 tonnes of SPL stored safely in secure containers and specially ventilated buildings. "But we couldn’t go on storing it for ever, so in 1989 we started seeking suitable treatment options. That was when we approached CSIRO, to comb the world for a process that would meet our environmental, technical and economic goals".

"When it became clear there wasn’t anything suitable worldwide, we began our own joint research, which led in 1992 to our trialling the Ausmelt technology."

Ausmelt Limited was established in the early 1980s by a former CSIRO researcher Dr John Floyd to commercialise his submerged-lance smelting technology - SIROSMELT.

SIROSMELT is a fast and efficient method of processing nonferrous metals based on a submerged combustion process. Fuel and gases are injected through a lance, the tip of which is submerged into the molten material in the furnace. The fuel combusts at the tip, heating and melting the incoming feed materials, and the injected gases cause vigorous agitation and rapid reactions.

Globally there are now 30 smelting plants using the core SIROSMELT technology which are used primarily for copper, zinc, lead and tin smelting which process more than 3 million tonnes per year of metallic concentrates.

In the processing of spent pot lining, typically operating at around 1250 degrees Celsius, the submerged lance technology has proved ideal for releasing the fluorine contained in the spent pot lining for conversion to other products. The process also destroys any cyanide that may be present.

The Portland Aluminium SPL team had to overcome many technical challenges, including finding a way to produce aluminium fluoride from the gases liberated by the process. Later, when the pilot reprocessing plant began operating, problems had to be solved in handling the gases and by-products.

The success of the process has attracted world attention and is being considered by other aluminium smelting organisations for the effective disposal of SPL.

Rosie Schmedding | EurekAlert
Further information:
http://www.ausimm.com.au/green2002/html/program.html

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>