Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne breakthrough may revolutionize ethylene production

07.02.2008
Scientists create environmentally friendly technology to produce commonly used compound

A new environmentally friendly technology created by scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory may revolutionize the production of the world's most commonly produced organic compound, ethylene.

An Argonne research team led by senior ceramist Balu Balachandran devised a high-temperature membrane that can produce ethylene from an ethane stream by removing pure hydrogen. “This is a clean, energy-efficient way of producing a chemical that before required methods that were expensive and wasteful and also emitted a great deal of pollution,” Balachandran said.

Ethylene has a vast number of uses in all aspects of industry. Farmers and horticulturalists use it as a plant hormone to promote flowering and ripening, especially in bananas. Doctors and surgeons have also long used ethylene as an anesthetic, while ethylene-based polymers can be found in everything from freezer bags to fiberglass.

Because the new membrane lets only hydrogen pass through it, the ethane stream does not come into contact with atmospheric oxygen and nitrogen, preventing the creation of a miasma of greenhouse gases – nitrogen oxide, carbon dioxide and carbon monoxide – associated with the traditional production of ethylene by pyrolysis, in which ethane is exposed to jets of hot steam. The world’s ethylene producers manufacture more than 75 million metric tons of ethylene per year, causing millions of metric tons’ worth of greenhouse gas emissions.

Unlike pyrolysis, which requires the constant input of heat, the hydrogen transport membrane (HTM) produces the fuel needed in order to drive the reaction. By using air on one side of the membrane, the already-transported hydrogen can react with oxygen to provide energy. “By using this membrane, we essentially enable the reaction to feed itself,” Balachandran said. “The heat is produced where it is needed.”

The new membrane reactor also performs an additional chemical trick: by constantly removing hydrogen from the stream, the membrane alters the ratio of reactants to products, enabling the reaction to make more ethylene that it theoretically could have before reaching equilibrium. “We are essentially confusing or cheating the thermodynamic limit,” Balachandran said. “The membrane reactor thinks: ‘hey, I haven’t reached equilibrium yet, let me take this reaction forward.’”

While Balachandran’s team, which included chemists Stephen Dorris, Tae Lee, Chris Marshall and Charles Scouton, designed this experiment merely to prove the membrane’s capability to produce ethylene, he hopes to extend the project by pairing with an industrial partner who would produce the membranes commercially. Since the membrane reduces the number of steps required to produce ethylene, the technology could enable the chemical to be produced more cheaply, he said.

The results of the research are expected to be presented at the 2008 Clean Technology conference in Boston in June. The work was funded by the Department of Energy's Industrial Technology Program, which resides within its Office of Energy Efficiency & Renewable Energy.

Steve McGregor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>