Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot polymer catches carbon dioxide better

31.05.2002


A new and economical technology for the separation and capture of carbon dioxide from industrial processes could lead to a significant reduction in greenhouse-gas emissions to the atmosphere. Scientists at the Department of Energy’s Los Alamos National Laboratory are developing a new high-temperature polymer membrane to separate and capture carbon dioxide, preventing its escape into the atmosphere. This work is part of the DOE Carbon Sequestration Program’s mission to reduce the amount of carbon dioxide emitted into the environment from industrial processes.



Growing concern about the potential worldwide environmental impacts, such as global warming and acidification of the oceans, from the vast amounts of carbon dioxide released from the combustion of fossil fuels prompts scientists to research and develop methods for carbon sequestration. National studies estimate approximately 30 percent of human-caused carbon dioxide emissions are a result of power-producing industries.

At the American Geophysical Union conference today in Washington D.C., Jennifer Young, principal investigator for Los Alamos’ carbon dioxide membrane separation project, presents data on a new polymeric-metallic membrane that is operationally stable at temperatures as high as 370 degrees Celsius. To date, polymer membranes commercially available for gas separation are limited to maximum operating temperatures of 150 degrees Celsius.


Industrial processes that produce carbon dioxide operate at temperatures as high as 375 degrees Celsius, and to sequester, or capture, the carbon dioxide, it first must be separated from other gases.

"Current technologies for separating carbon dioxide from other gases require that the gas stream be cooled to below 150 degrees Celsius, which reduces energy efficiency and increases the cost of separation and capture," said Young. "By making a membrane which functions at elevated temperatures, we increase the practicality and economic feasibility of using membranes in industrial settings."

According to Young, developing an efficient and economically feasible membrane from membrane materials is difficult because the membrane materials are expensive, and there is a tradeoff between productivity and selectivity. On the other hand, less expensive commercially available polymer membranes are effective only up to 150 degrees Celsius.

"Our approach is to improve upon conventional technology," said Young. "The most promising application of this technology in terms of the carbon sequestration program is the separation of hydrogen from carbon dioxide in synthesis gas; however, the technology is not limited to this particular gas pair. For example, it might also be useful in the separation of carbon dioxide from methane. "

Young’s team developed the high-temperature membrane based on the polymer polybenzimidazole, or PBI, combined with a porous metallic support. According to Young, the resulting composite membrane outperforms other high-temperature membranes in terms of selectivity for the separation of hydrogen from carbon dioxide; has the highest demonstrated operating temperature of polymer-based membranes, 370 degrees Celsius; is chemically resistant; and is easily processed. The unique combination of metallic support and polymer film to form thin-film composite membranes also allows the membrane to be effective at higher pressures than conventional membranes.


Collaborators in this project include Pall Corporation, the University of Colorado, Idaho National Engineering and Environmental Laboratory and Shell Oil Company.

The project is funded through DOE’s Carbon Sequestration Program through the National Energy Technology Laboratory.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring safety and confidence in the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction and improving the environmental and nuclear materials legacy of the cold war. Los Alamos’ capabilities assist the nation in addressing energy, environment, infrastructure and biological security problems.

Shelley Thompson | EurekAlert!
Further information:
http://www.lanl.gov/external/news/releases

More articles from Process Engineering:

nachricht Quick and safe laser joining of steel-aluminum mixed connections
05.06.2018 | Laser Zentrum Hannover e.V.

nachricht Coating free-form surfaces on large optical components
05.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>