Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot polymer catches carbon dioxide better

31.05.2002


A new and economical technology for the separation and capture of carbon dioxide from industrial processes could lead to a significant reduction in greenhouse-gas emissions to the atmosphere. Scientists at the Department of Energy’s Los Alamos National Laboratory are developing a new high-temperature polymer membrane to separate and capture carbon dioxide, preventing its escape into the atmosphere. This work is part of the DOE Carbon Sequestration Program’s mission to reduce the amount of carbon dioxide emitted into the environment from industrial processes.



Growing concern about the potential worldwide environmental impacts, such as global warming and acidification of the oceans, from the vast amounts of carbon dioxide released from the combustion of fossil fuels prompts scientists to research and develop methods for carbon sequestration. National studies estimate approximately 30 percent of human-caused carbon dioxide emissions are a result of power-producing industries.

At the American Geophysical Union conference today in Washington D.C., Jennifer Young, principal investigator for Los Alamos’ carbon dioxide membrane separation project, presents data on a new polymeric-metallic membrane that is operationally stable at temperatures as high as 370 degrees Celsius. To date, polymer membranes commercially available for gas separation are limited to maximum operating temperatures of 150 degrees Celsius.


Industrial processes that produce carbon dioxide operate at temperatures as high as 375 degrees Celsius, and to sequester, or capture, the carbon dioxide, it first must be separated from other gases.

"Current technologies for separating carbon dioxide from other gases require that the gas stream be cooled to below 150 degrees Celsius, which reduces energy efficiency and increases the cost of separation and capture," said Young. "By making a membrane which functions at elevated temperatures, we increase the practicality and economic feasibility of using membranes in industrial settings."

According to Young, developing an efficient and economically feasible membrane from membrane materials is difficult because the membrane materials are expensive, and there is a tradeoff between productivity and selectivity. On the other hand, less expensive commercially available polymer membranes are effective only up to 150 degrees Celsius.

"Our approach is to improve upon conventional technology," said Young. "The most promising application of this technology in terms of the carbon sequestration program is the separation of hydrogen from carbon dioxide in synthesis gas; however, the technology is not limited to this particular gas pair. For example, it might also be useful in the separation of carbon dioxide from methane. "

Young’s team developed the high-temperature membrane based on the polymer polybenzimidazole, or PBI, combined with a porous metallic support. According to Young, the resulting composite membrane outperforms other high-temperature membranes in terms of selectivity for the separation of hydrogen from carbon dioxide; has the highest demonstrated operating temperature of polymer-based membranes, 370 degrees Celsius; is chemically resistant; and is easily processed. The unique combination of metallic support and polymer film to form thin-film composite membranes also allows the membrane to be effective at higher pressures than conventional membranes.


Collaborators in this project include Pall Corporation, the University of Colorado, Idaho National Engineering and Environmental Laboratory and Shell Oil Company.

The project is funded through DOE’s Carbon Sequestration Program through the National Energy Technology Laboratory.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring safety and confidence in the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction and improving the environmental and nuclear materials legacy of the cold war. Los Alamos’ capabilities assist the nation in addressing energy, environment, infrastructure and biological security problems.

Shelley Thompson | EurekAlert!
Further information:
http://www.lanl.gov/external/news/releases

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>