Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reliable joining of high-strength steels using a laser hybrid welding process

05.09.2014

Laser-gas metal arc (GMA) hybrid welding is fast, good for deep welding, and can be used to bridge large gaps.

However, for thicker high-strength, fine-grain structural steels, hot cracks and undesired hardness levels can occur in the welding seam. For this reason, in an interdisciplinary project scientists at the Laser Zentrum Hannover e.V. (LZH) and the Leibniz Universität Hannover (LUH) have developed a hybrid welding system with inductive preheating. This process can be used for reliable, high-quality, single-layer welding of high-strength, fine-grain structural steels up to a thickness of 20 mm.


Single layer laser-GMA hybrid welding: Cross-section of a weld seam of 20 mm thick high-strength, fine-grain structural steel of the grade S690QL. Photo: LZH


Experimental setup of the laser-GMA hybrid welding process with an inductive coil for preheating. Photo: LZH

In order to increase the weld seam quality for laser-GMA hybrid welding, the Joining and Cutting of Metals Group at the LZH has expanded the process to include integrated, inductive preheating. Directly before the welding process takes place, an induction coil brings energy into a targeted area of the welding seam.

Thus, the steel is preheated to the desired temperature, without direct contact. The weld seams are less brittle, fracture strain values are better, and hot cracks can be avoided. With this process, steel sheets can be welded with a single-layer, and time and material can be significantly saved.

Developed for Practical Application

The process was developed for high-strength, fine-grain structural steels with yield strengths from 460 to 690 N/mm². Applications for the used grades S700MC, X70 and S690QL can be found in crane, pump, pipeline and bridge construction, and in offshore areas. With this process, depending on the sheet thickness, feed rates of 0.75 m/min to 2.5 m/min can be reached.

Successful Interdisciplinary

The basis for the project was close cooperation between the material and process technicians from the LZH, and the engineers from the civil engineering and electrical engineering fields at the LUH. While the engineers at the LZH experimented with welding processes, the Institute for Electrotechnology and the Institute for Steel Construction (both LUH) made simulations of the preheating process, respectively the welding process, and evaluated the welding seams.

The project DOVOR – High-performance welding of high-strength, fine-grained steels with high process reliability, using a hybrid welding process with integrated preheating – was financially supported by the German Federation of Industrial Research Associations "Otto von Guericke" e.V. (AiF) and the Research Association for Steel Application (FOSTA).

Weitere Informationen:

http://www.lzh.de/en/publications/pressreleases/2014/reliable-joining-of-high-st... - further illustration and a video

Lena Bennefeld | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/en

Further reports about: Application Cutting FOSTA LUH LZH Laser Leibniz Steel construction feed temperature

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>