Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reliable joining of high-strength steels using a laser hybrid welding process

05.09.2014

Laser-gas metal arc (GMA) hybrid welding is fast, good for deep welding, and can be used to bridge large gaps.

However, for thicker high-strength, fine-grain structural steels, hot cracks and undesired hardness levels can occur in the welding seam. For this reason, in an interdisciplinary project scientists at the Laser Zentrum Hannover e.V. (LZH) and the Leibniz Universität Hannover (LUH) have developed a hybrid welding system with inductive preheating. This process can be used for reliable, high-quality, single-layer welding of high-strength, fine-grain structural steels up to a thickness of 20 mm.


Single layer laser-GMA hybrid welding: Cross-section of a weld seam of 20 mm thick high-strength, fine-grain structural steel of the grade S690QL. Photo: LZH


Experimental setup of the laser-GMA hybrid welding process with an inductive coil for preheating. Photo: LZH

In order to increase the weld seam quality for laser-GMA hybrid welding, the Joining and Cutting of Metals Group at the LZH has expanded the process to include integrated, inductive preheating. Directly before the welding process takes place, an induction coil brings energy into a targeted area of the welding seam.

Thus, the steel is preheated to the desired temperature, without direct contact. The weld seams are less brittle, fracture strain values are better, and hot cracks can be avoided. With this process, steel sheets can be welded with a single-layer, and time and material can be significantly saved.

Developed for Practical Application

The process was developed for high-strength, fine-grain structural steels with yield strengths from 460 to 690 N/mm². Applications for the used grades S700MC, X70 and S690QL can be found in crane, pump, pipeline and bridge construction, and in offshore areas. With this process, depending on the sheet thickness, feed rates of 0.75 m/min to 2.5 m/min can be reached.

Successful Interdisciplinary

The basis for the project was close cooperation between the material and process technicians from the LZH, and the engineers from the civil engineering and electrical engineering fields at the LUH. While the engineers at the LZH experimented with welding processes, the Institute for Electrotechnology and the Institute for Steel Construction (both LUH) made simulations of the preheating process, respectively the welding process, and evaluated the welding seams.

The project DOVOR – High-performance welding of high-strength, fine-grained steels with high process reliability, using a hybrid welding process with integrated preheating – was financially supported by the German Federation of Industrial Research Associations "Otto von Guericke" e.V. (AiF) and the Research Association for Steel Application (FOSTA).

Weitere Informationen:

http://www.lzh.de/en/publications/pressreleases/2014/reliable-joining-of-high-st... - further illustration and a video

Lena Bennefeld | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/en

Further reports about: Application Cutting FOSTA LUH LZH Laser Leibniz Steel construction feed temperature

More articles from Process Engineering:

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>