Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycling Carbon Fibers from Composite Materials

06.06.2013
Siemens and several partners are developing various procedures for recycling carbon fibers from composites.

These lightweight materials consist of two main components with, for example, woven carbon fibers and a polymer matrix material. Current application areas for such composites include aircraft manufacturing.



However, the materials are also increasingly being used in the automotive industry due to their high stability and because they have a lower density than aluminum. Carbon fibers are relatively expensive because the process used to manufacture them is costly and requires a lot of energy.

The recycling of carbon fibers therefore has to be carried out as efficiently as possible. As reported in the latest edition of the "Pictures of the Future" research magazine, the Siemens approach here involves recovering the fibers in the same form they were used and without any loss of mass.

This ensures they will retain their properties to the greatest extent possible. Siemens developed the associated process in the MAI Carbon research cluster.

The goal of MAIrecycling - the lead project in the cluster - is to establish a complete recycling process chain for production rejects, complex mixed materials, and reprocessed carbon fibers that are suitable for reuse in various products. The project partners include Audi, BMW, SGL Carbon, Neenah-Gessner, Voith Composites, the Fraunhofer Institute for Building Physics, and the bifa environmental institute.

These days, carbon fibers are usually extracted from used components or production scrap by breaking down resins in a pyrolytic process at relatively high temperatures. In the solvolysis recycling procedure employed by scientists at Siemens Corporate Technology, the resin component is heated under pressure at a temperature of 200 degrees Celsius and converted to low molecular-weight soluble alcohols with the help of water. No environmentally damaging solvents are used in the process, which also requires much less energy than would be required to manufacture new fibers.

The woven fabric recovered from the workpiece retains its shape and its fibers remain intact. As a result, it can be immediately further processed. The fibers' mechanical properties are also nearly fully retained. As a next step, the researchers are now looking for ways to use the recycled fibers in new types of reshaped workpieces.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: Carbon Recycling Synthetic Composite carbon fiber

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>