Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Recycling Carbon Fibers from Composite Materials

Siemens and several partners are developing various procedures for recycling carbon fibers from composites.

These lightweight materials consist of two main components with, for example, woven carbon fibers and a polymer matrix material. Current application areas for such composites include aircraft manufacturing.

However, the materials are also increasingly being used in the automotive industry due to their high stability and because they have a lower density than aluminum. Carbon fibers are relatively expensive because the process used to manufacture them is costly and requires a lot of energy.

The recycling of carbon fibers therefore has to be carried out as efficiently as possible. As reported in the latest edition of the "Pictures of the Future" research magazine, the Siemens approach here involves recovering the fibers in the same form they were used and without any loss of mass.

This ensures they will retain their properties to the greatest extent possible. Siemens developed the associated process in the MAI Carbon research cluster.

The goal of MAIrecycling - the lead project in the cluster - is to establish a complete recycling process chain for production rejects, complex mixed materials, and reprocessed carbon fibers that are suitable for reuse in various products. The project partners include Audi, BMW, SGL Carbon, Neenah-Gessner, Voith Composites, the Fraunhofer Institute for Building Physics, and the bifa environmental institute.

These days, carbon fibers are usually extracted from used components or production scrap by breaking down resins in a pyrolytic process at relatively high temperatures. In the solvolysis recycling procedure employed by scientists at Siemens Corporate Technology, the resin component is heated under pressure at a temperature of 200 degrees Celsius and converted to low molecular-weight soluble alcohols with the help of water. No environmentally damaging solvents are used in the process, which also requires much less energy than would be required to manufacture new fibers.

The woven fabric recovered from the workpiece retains its shape and its fibers remain intact. As a result, it can be immediately further processed. The fibers' mechanical properties are also nearly fully retained. As a next step, the researchers are now looking for ways to use the recycled fibers in new types of reshaped workpieces.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:

Further reports about: Carbon Recycling Synthetic Composite carbon fiber

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>