Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rapid manufacturing of aluminium components for series production with good prospects

At the international conference ICAA11 on 25th September 2008 in Aachen the Fraunhofer Institute for Laser Technology ILT (Aachen, Germany) gave for the first time an extensive presentation on the successful results of the analysis of mechanical properties of generated aluminium components by selective laser melting.

Aluminium alloys are largely used in all kind of industries, e.g. in the car industry, mechanical engineering and aerospace industry. For some applications the additive manufacturing technology represents an economical alternative to the various types of mould casting.

For serial-identical functional prototypes, one-off parts or short-run batches, the selective laser melting (SLM) process enables to react faster to the customer's demand than by conventional processes. In close cooperation with his industrial partner Festo AG&Co KG the Fraunhofer ILT demonstrated on a high-volume-production valve made of AlSi10Mg the feasibility to reduce the manufacturing process for 6 serial-identical functional prototypes from 120 days by use of die casting and 30 days by conventional prototyping (combining milling, eroding, turning) to 7 days by SLM processes. The mechanical properties match those of conventionally manufactured components. Some properties are even better. A decisive criterion for industrial use!

The additive process of selective laser melting (SLM) is used in the direct manufacturing of metallic functional components in various branches of industry. The SLM process fabricates metallic components - layer by layer - directly from 3D-CAD data.

SLM is increasingly established for the production of individual parts for dental restoration and of short-run batches or functional prototypes for tooling parts. Large experience for processing titanium and steel by SLM and extensive knowledge of the resulting mechanical properties are still available. The Fraunhofer ILT is currently qualifying SLM for the aluminium die-casting alloy AlSi10Mg as part of the BMBF's "Alugenerativ" project.

The primary objective when qualifying a material for SLM is to obtain a component density approaching 100 percent without any cracks or fusion defects. This involves evaluating the required process parameters, especially scanning velocity and laser output power. Also an optional preheating process of the parts to decrease residual stresses and so to minimize crack building is analysed. The results of the research cooperation with industrial partners are promising. With a laser power of already 150 W and a scanning velocity of 100 mm/s densities approaching 100% are achieved with AlSi10Mg parts. At a laser power of 250 W, the scanning velocity can be increased to 500 mm/s which consequently increases the build rate. Also various parts can be simultaneously manufactured layer by layer in the SLM plant. The results of tension and fatigue tests demonstrate that the mechanical properties are at least equivalent to the strength parameters of series-produced components made of die-cast AlSi10Mg according to EN 1706 specifications. Sometimes they even surpass the properties required.

In cooperation with the industrial partner Festo AG&Co KG serial-identical functional prototypes were successfully manufactured (see picture). The high-volume-production valve is used as a reference part to qualify additive manufacturing. The additive manufacturing time for two valves in one process is approximately 11,5 hours.

Axel Bauer | idw
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>