Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quick and flexible Structuring of Glass Surfaces

Industry can now use a new laser process for structuring large surface areas of float glass. This technology was developed by the Laser Zentrum Hannover e.V. (LZH) and Cerion GmbH and is characterized by high quality, short processing time and flexibility in design.
The first successful use of this new process can be seen in Norderstedt, near Hamburg, Germany. Nearly 300 m² of the insulated glass façade of a new building were structured on both sides using laser technology. Each glass panel measures 2.8 m by 0.8 m, and weighs approximately 150 kg.

Complex surface decors or large area surface structuring on architectural glass are usually time-consuming and often require processes that are health endangering. For example, wet chemical etching uses hydrofluoric acid, which is highly poisonous. Sandblasting, depending on the degree of frosting or matting required, is time consuming, as several process steps are necessary. For both processes, chemical or sandblasting, the one-use masking is necessary, and a final cleaning step is also needed.

In a joint research project, LZH and Cerion have developed an industrial glass processing with a more economical and much more flexible method. A CO2 laser using infrared laser radiation (10.6 µm wavelength) is used to structure the glass. The focused beam can achieve high local intensities. and vaporizes the material on the glass surface, pinpoint for pinpoint, thus creating periodic microstructures.

At the LZH, scientists in the “Glass Group” (Technologies for Non-metals Department) adapted a technology used for metal processing to fit the needs of glass production. Any shape or form can be transferred to the glass surface using scanner technology for guiding laser beam. This makes it possible to structure glass surfaces at an extremely high speed, since only a small change in the scanner mirror angle is necessary to cover a large distance. Large surfaces can be processed at up to 5.4 square meters per hour with resolutions of 150 dpi. The frosting or matting level can be adjusted in process from transparent to opaque.

Testing of the mechanical characteristics of the lasered glass, such as bending and impulse stability was also part of the process development, especially concerning the requirements placed on static glass components in buildings. Cerion GmbH in Minden, Germany, built a prototype based on the detailed parameter studies carried out by the LZH, and this prototype was used to optimize the process for industrial use. Patents for the system technology have been applied for, and the Cerion GmbH is offering this technology to their international clients under the trademark name of CERILAS. The process is being continually improved and optimized for other application areas, for example non-slip glass surfaces, a process that has already been patented by Cerion.

Laser structuring is highly flexible for both conventional window glass or for thermally pre-stressed float glass, including single-pane safety glass. Safety glass is used for many architectural applications, both inside and out, for example glass façades, glass doors or room partitions, or for designer furniture.

The project „Development of laser-based structuring process for glass surfaces“ has received financial support from the German Federal Ministry of Economics and Technology (BMWi) through the German Federation of Industrial Research Associations "Otto von Guericke" e.V., within the framework of the supportive measure “Central Innovation Program for Medium-Sized Businesses” (ZIM).

Laser technology was used to structure glass for a building façade near Hamburg, Germany. Photo source: Cerion GmbH

Business Development & Communications Department
Communications Group
Michael Botts
Public Relations
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>