Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick and flexible Structuring of Glass Surfaces

18.11.2011
Industry can now use a new laser process for structuring large surface areas of float glass. This technology was developed by the Laser Zentrum Hannover e.V. (LZH) and Cerion GmbH and is characterized by high quality, short processing time and flexibility in design.
The first successful use of this new process can be seen in Norderstedt, near Hamburg, Germany. Nearly 300 m² of the insulated glass façade of a new building were structured on both sides using laser technology. Each glass panel measures 2.8 m by 0.8 m, and weighs approximately 150 kg.

Complex surface decors or large area surface structuring on architectural glass are usually time-consuming and often require processes that are health endangering. For example, wet chemical etching uses hydrofluoric acid, which is highly poisonous. Sandblasting, depending on the degree of frosting or matting required, is time consuming, as several process steps are necessary. For both processes, chemical or sandblasting, the one-use masking is necessary, and a final cleaning step is also needed.

In a joint research project, LZH and Cerion have developed an industrial glass processing with a more economical and much more flexible method. A CO2 laser using infrared laser radiation (10.6 µm wavelength) is used to structure the glass. The focused beam can achieve high local intensities. and vaporizes the material on the glass surface, pinpoint for pinpoint, thus creating periodic microstructures.

At the LZH, scientists in the “Glass Group” (Technologies for Non-metals Department) adapted a technology used for metal processing to fit the needs of glass production. Any shape or form can be transferred to the glass surface using scanner technology for guiding laser beam. This makes it possible to structure glass surfaces at an extremely high speed, since only a small change in the scanner mirror angle is necessary to cover a large distance. Large surfaces can be processed at up to 5.4 square meters per hour with resolutions of 150 dpi. The frosting or matting level can be adjusted in process from transparent to opaque.

Testing of the mechanical characteristics of the lasered glass, such as bending and impulse stability was also part of the process development, especially concerning the requirements placed on static glass components in buildings. Cerion GmbH in Minden, Germany, built a prototype based on the detailed parameter studies carried out by the LZH, and this prototype was used to optimize the process for industrial use. Patents for the system technology have been applied for, and the Cerion GmbH is offering this technology to their international clients under the trademark name of CERILAS. The process is being continually improved and optimized for other application areas, for example non-slip glass surfaces, a process that has already been patented by Cerion.

Laser structuring is highly flexible for both conventional window glass or for thermally pre-stressed float glass, including single-pane safety glass. Safety glass is used for many architectural applications, both inside and out, for example glass façades, glass doors or room partitions, or for designer furniture.

The project „Development of laser-based structuring process for glass surfaces“ has received financial support from the German Federal Ministry of Economics and Technology (BMWi) through the German Federation of Industrial Research Associations "Otto von Guericke" e.V., within the framework of the supportive measure “Central Innovation Program for Medium-Sized Businesses” (ZIM).

Laser technology was used to structure glass for a building façade near Hamburg, Germany. Photo source: Cerion GmbH

Contact:
Business Development & Communications Department
Communications Group
Michael Botts
Public Relations
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/en/publication/pressreleases/2011/quickandflexiblestructuringofglasssurfaces

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>