Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Purifying dairy wastewater – at the same time producing electricity

In an EU-funded project the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart is developing, together with industrial and scientific partners, a modular system to purify dairy wastewater electrochemically. Using an integrated fuel cell, the generated hydrogen will be recovered to supply power to the system.

The wastewater discharged from the production of dairy products such as cheese, quark and yoghurt typically contain lactose, proteins and milk fats as well as surfactants and disinfectants from cleaning the production plants.

Cheese production also results in whey, a watery solution, which besides milk proteins contains mainly lactose. The disposal of this wastewater is very cost-intensive due to the high chemical and biological oxygen demand. Large dairies typically treat their wastewater in large-scale biological wastewater treatment plants. However for many, especially small and medium-sized enterprises, the investments in such solutions are prohibitively expensive.

In the EU-funded project REWAGEN a project consortium with business and research partners – led by the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart – is therefore developing a multistage process for the efficient electrochemical treatment of dairy effluents and whey. The modular design will make it possible to adapt the system flexibly to the varying amount of wastewater at smaller dairies.
“Here, the various steps in the process are combined and integrated into a compact system. The aim is that each step in the process should provide a substance flow that can be further processed or fed back into the system,” explains Alexander Karos, Project Manager at the Fraunhofer IGB. The purified water can be re-used directly, for example to clean the plants.

The hydrogen generated as a by-product from the electrolysis of the water will also be used – to supply the plant with electricity. “We want to separate and purify the hydrogen so that we can use it in a fuel cell to supply power to the system,” says Karos, describing the new approach.

“To purify the wastewater we favour electrochemical processes because, in this way, we can prevent the addition of chemicals and the related increased salinity of the water,” Karos points out. To achieve this the researchers aim to combine four different electrochemical processes. In a first step oils and fats will be separated using the process of pulsed electrocoalescence: Dispersed droplets of oil move around in the alternating electric field due to their surface charge and merge to form larger drops of oil that can be separated mechanically. Particulate impurities are separated in the subsequent step by means of electroflocculation. “Here we make use of iron electrodes that release iron ions into the water and react there forming iron hydroxide floccules. With these floccules we capture and precipitate organic solids,” Karos adds. In a third electrochemical cell, dissolved organic components are degraded by electrooxidative processes, for example by means of a diamond electrode. And finally in a fourth stage with capacitive deionization, dissolved salts are removed by concentrating them by a correspondingly charged electrode and precipitating them.

The REWAGEN project “Electrochemical WAter treatment system in the dairy industry with hydroGEN REcovery and electricity production” is being funded for four years within the scope of the 7th Framework Research Programme under the Grant Agreement Number 283018. Besides the Fraunhofer IGB the research partner is Leitat (Spain). Participating industrial partners, all in the size of small and medium-sized enterprises (SMEs) are HyGear (Netherlands), Aqon (Germany), Idropan Dell Orto Depuratori (Italy), Productes El Canadell (Spain), C-Tech Innovation (UK), ISA – Intelligent Sensing Anywhere (Portugal), Eilenburger Elektrolyse- und Umwelttechnik (Germany) and Knowledge Innovation Market (Spain).

Dipl.-Ing. Siegfried Egner, Phone +49 711 970-3643
Alexander Karos M.Sc., Mobile +49 172 7148215

Dr. Claudia Vorbeck | Fraunhofer-Institut
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>