Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process holds promise for production of synthetic gasoline

03.12.2013
A chemical system developed by researchers at the University of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products out of carbon dioxide.

A novel "co-catalyst" system using inexpensive, easy to fabricate carbon-based nanofiber materials efficiently converts carbon dioxide to carbon monoxide, a useful starting-material for synthesizing fuels. The findings have been published online in advance of print in the journal Nature Communications.

"I believe this can open a new field for the design of inexpensive and efficient catalytic systems for the many researchers already working with these easily manipulated advanced carbon materials," says Amin Salehi-Khojin, UIC professor of mechanical and industrial engineering and principal investigator on the study.

Researchers have spent decades trying to find an efficient, commercially viable way to chemically "reduce," or lower the oxidation state, of carbon dioxide. The UIC researchers approached the problem in a new way.

Although reducing carbon dioxide is a two-step process, chemists had commonly used a single catalyst, Salehi-Khojin said. He and his colleagues experimented with using different catalysts for each step.

In previous work, Salehi-Khojin used an ionic liquid to catalyze the first step of the reaction, and silver for the final reduction to carbon monoxide. The co-catalyst system was more efficient than single-catalyst carbon dioxide reduction systems, he said.

But silver is expensive. So he and his coworkers set out to see if a relatively new class of metal-free catalysts – graphitic carbon structures doped with other reactive atoms – might work in place of the silver.

They tried a common structural material, carbon nanofibers, which was doped with nitrogen, as a substitute for silver to catalyze the second step.

When these carbon materials are used as catalysts, the doping atoms, most often nitrogen, drive the reduction reaction. But, through careful study of this particular reaction, the researchers found that it was not the nitrogen that was the catalyst.

"It was the carbon atom sitting next to the dopant that was responsible," said Mohammad Asadi, a UIC graduate student who is one of two first-authors of the study.

"We were very surprised at first," Asadi said.

But as they continued to characterize the reaction it became clear not only that carbon was catalyzing the reaction, but that the co-catalyst system was more efficient than silver, "showing substantial synergistic effects," Asadi said.

Bijandra Kumar, UIC research scholar and the other first-author of the paper, said the team "uncovered the hidden mechanism" of the co-catalyzed reaction, which has "opened up a lot of options for designing inexpensive and efficient catalyst system for carbon dioxide conversion."

"Further, one can imagine that using atomically-thin, two-dimensional graphene nano-sheets, which have extremely high surface area and can easily be designed with dopant atoms like nitrogen, we can develop even far more efficient catalyst systems," Kumar said.

"If the reaction happened on the dopant, we would not have much freedom in terms of structure," said Salehi-Khojin. In that case, little could be done to increase the efficiency or stability of the reaction.

But with the reaction happening on the carbon, "we have enormous freedom" to use these very advanced carbon materials to optimize the reaction, he said.

The researchers hope that their research leads to commercially viable processes for the production of syngas and even gasoline from carbon dioxide.

Co-authors are Davide Pisasale, Suman Sinha-Ray, Jeremiah Abiade and Alexander Yarin from UIC and Brian Rosen and Richard Haasch from the University of Illinois at Urbana-Champaign.

The study was supported in part by UIC. The work was carried out in part at the Frederick Seitz Materials Research Laboratory at the Urbana-Champaign campus.

UIC ranks among the nation's leading research universities and is Chicago's largest university with 27,500 students, 12,000 faculty and staff, 15 colleges and the state's major public medical center. A hallmark of the campus is the Great Cities Commitment, through which UIC faculty, students and staff engage with community, corporate, foundation and government partners to improve the quality of life in metropolitan areas around the world. For more information about UIC, please visit http://www.uic.edu.

NOTE: Please refer to the institution as the University of Illinois at Chicago on first reference and UIC on second reference. "University of Illinois" and "U. of I." are often assumed to refer to our sister campus in Urbana-Champaign.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>