Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process holds promise for production of synthetic gasoline

03.12.2013
A chemical system developed by researchers at the University of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products out of carbon dioxide.

A novel "co-catalyst" system using inexpensive, easy to fabricate carbon-based nanofiber materials efficiently converts carbon dioxide to carbon monoxide, a useful starting-material for synthesizing fuels. The findings have been published online in advance of print in the journal Nature Communications.

"I believe this can open a new field for the design of inexpensive and efficient catalytic systems for the many researchers already working with these easily manipulated advanced carbon materials," says Amin Salehi-Khojin, UIC professor of mechanical and industrial engineering and principal investigator on the study.

Researchers have spent decades trying to find an efficient, commercially viable way to chemically "reduce," or lower the oxidation state, of carbon dioxide. The UIC researchers approached the problem in a new way.

Although reducing carbon dioxide is a two-step process, chemists had commonly used a single catalyst, Salehi-Khojin said. He and his colleagues experimented with using different catalysts for each step.

In previous work, Salehi-Khojin used an ionic liquid to catalyze the first step of the reaction, and silver for the final reduction to carbon monoxide. The co-catalyst system was more efficient than single-catalyst carbon dioxide reduction systems, he said.

But silver is expensive. So he and his coworkers set out to see if a relatively new class of metal-free catalysts – graphitic carbon structures doped with other reactive atoms – might work in place of the silver.

They tried a common structural material, carbon nanofibers, which was doped with nitrogen, as a substitute for silver to catalyze the second step.

When these carbon materials are used as catalysts, the doping atoms, most often nitrogen, drive the reduction reaction. But, through careful study of this particular reaction, the researchers found that it was not the nitrogen that was the catalyst.

"It was the carbon atom sitting next to the dopant that was responsible," said Mohammad Asadi, a UIC graduate student who is one of two first-authors of the study.

"We were very surprised at first," Asadi said.

But as they continued to characterize the reaction it became clear not only that carbon was catalyzing the reaction, but that the co-catalyst system was more efficient than silver, "showing substantial synergistic effects," Asadi said.

Bijandra Kumar, UIC research scholar and the other first-author of the paper, said the team "uncovered the hidden mechanism" of the co-catalyzed reaction, which has "opened up a lot of options for designing inexpensive and efficient catalyst system for carbon dioxide conversion."

"Further, one can imagine that using atomically-thin, two-dimensional graphene nano-sheets, which have extremely high surface area and can easily be designed with dopant atoms like nitrogen, we can develop even far more efficient catalyst systems," Kumar said.

"If the reaction happened on the dopant, we would not have much freedom in terms of structure," said Salehi-Khojin. In that case, little could be done to increase the efficiency or stability of the reaction.

But with the reaction happening on the carbon, "we have enormous freedom" to use these very advanced carbon materials to optimize the reaction, he said.

The researchers hope that their research leads to commercially viable processes for the production of syngas and even gasoline from carbon dioxide.

Co-authors are Davide Pisasale, Suman Sinha-Ray, Jeremiah Abiade and Alexander Yarin from UIC and Brian Rosen and Richard Haasch from the University of Illinois at Urbana-Champaign.

The study was supported in part by UIC. The work was carried out in part at the Frederick Seitz Materials Research Laboratory at the Urbana-Champaign campus.

UIC ranks among the nation's leading research universities and is Chicago's largest university with 27,500 students, 12,000 faculty and staff, 15 colleges and the state's major public medical center. A hallmark of the campus is the Great Cities Commitment, through which UIC faculty, students and staff engage with community, corporate, foundation and government partners to improve the quality of life in metropolitan areas around the world. For more information about UIC, please visit http://www.uic.edu.

NOTE: Please refer to the institution as the University of Illinois at Chicago on first reference and UIC on second reference. "University of Illinois" and "U. of I." are often assumed to refer to our sister campus in Urbana-Champaign.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>