Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Most Powerful Carbon Infrared Emitter in the World

08.12.2009
  • CIR® carbon infrared emitters heat plastics, glass or water with particularly high efficiency
  • Heraeus Noblelight now produces carbon infrared emitters in a new power class

For decades infrared emitters have been successfully used in industrial heating processes to dry coatings, form plastics and to manufacture solar cells. Since the 1990s, carbon infrared emitters have helped to save up to 30% in energy consumption in many processes.


Heraeus Photo
The most powerful carbon infrared emitter currently is 2.5 metres long and has a nominal power rating of approximately 14 kW. Copyright Heraeus Noblelight 2009

In October, the manufacture of the world’s most powerful carbon infrared emitter was brought on stream at Heraeus Noblelight in Kleinostheim, Germany. Carbon emitters can now be manufactured in lengths up to 5 metres.

To date, the most powerful carbon emitters measure 2.5 metres long with a nominal power of around 14kW, which is twice the power output which could previously be achieved by carbon emitters of such lengths. New long, high power carbon emitters operating at the effective medium wavelength, with a very fast response time will give a homogenous and even heating in one length.

The wavelength of infrared radiation has a significant influence on the process. Shortwave radiation penetrates deeply into large components and heats these rapidly and evenly. Medium wave radiation is effectively intensified at surfaces and is also very easily absorbed by water, glass and many plastics so that it is readily directly converted into heat.

Changing over to medium wave carbon infrared emitters can help to provide significant savings in energy costs. Comprehensive tests demonstrate that carbon emitters require up to 30% less energy than conventional shortwave emitters in the drying of water-based paints and lacquers. The CIR® carbon emitter has been matchless on the market for years as it combines medium wavelength radiation at high power with very fast reaction times in heating coatings, glass and plastics.

When drawing, laminating, embossing or stamping foils, infrared emitters which cover the total web width are of great advantage. Carbon infrared emitters heat the surface of plastic materials exactly at the surface, for example directly in front of the embossing slot, and homogenously over the web width.

Very long carbon emitters are also advantageous in the heating of coatings on tracks, strips and rollers.

Long Carbon Emitters Increase Safety
Conventional medium wave infrared emitters offer powers up to 60kW/m² with reaction times of the order of 2-3 minutes. In the event of an unanticipated stoppage of the conveyor belt, conventional medium wave emitters need to be swivelled away or screened, both actions taking some time, in order to prevent damage to the web. Carbon emitters have power ratings up to 150 kW/m², they have reaction times of the order of seconds and can be almost immediately switched off in the event of belt stoppage.
Heraeus Noblelight offers the complete palette of infrared from NIR near infrared to CIR medium wave carbon infrared, carries out trials with materials to be heated and advises on the selection of the optimum emitter for specific processes.

Heraeus has more than 40 years experience of infrared emitters, both for end-users and for large OEMs. It carries out practical tests and trials using customers’ own materials in its in-house Application Centres, to establish the best process solutions.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of speciality light sources. In 2008, Heraeus Noblelight had an annual turnover of 92.5 Million € and employed 735 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues approaching € 3 billion and precious metal trading revenues of € 13 billion, as well as over 13,000 employees in more than 110 companies worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>