Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Most Powerful Carbon Infrared Emitter in the World

08.12.2009
  • CIR® carbon infrared emitters heat plastics, glass or water with particularly high efficiency
  • Heraeus Noblelight now produces carbon infrared emitters in a new power class

For decades infrared emitters have been successfully used in industrial heating processes to dry coatings, form plastics and to manufacture solar cells. Since the 1990s, carbon infrared emitters have helped to save up to 30% in energy consumption in many processes.


Heraeus Photo
The most powerful carbon infrared emitter currently is 2.5 metres long and has a nominal power rating of approximately 14 kW. Copyright Heraeus Noblelight 2009

In October, the manufacture of the world’s most powerful carbon infrared emitter was brought on stream at Heraeus Noblelight in Kleinostheim, Germany. Carbon emitters can now be manufactured in lengths up to 5 metres.

To date, the most powerful carbon emitters measure 2.5 metres long with a nominal power of around 14kW, which is twice the power output which could previously be achieved by carbon emitters of such lengths. New long, high power carbon emitters operating at the effective medium wavelength, with a very fast response time will give a homogenous and even heating in one length.

The wavelength of infrared radiation has a significant influence on the process. Shortwave radiation penetrates deeply into large components and heats these rapidly and evenly. Medium wave radiation is effectively intensified at surfaces and is also very easily absorbed by water, glass and many plastics so that it is readily directly converted into heat.

Changing over to medium wave carbon infrared emitters can help to provide significant savings in energy costs. Comprehensive tests demonstrate that carbon emitters require up to 30% less energy than conventional shortwave emitters in the drying of water-based paints and lacquers. The CIR® carbon emitter has been matchless on the market for years as it combines medium wavelength radiation at high power with very fast reaction times in heating coatings, glass and plastics.

When drawing, laminating, embossing or stamping foils, infrared emitters which cover the total web width are of great advantage. Carbon infrared emitters heat the surface of plastic materials exactly at the surface, for example directly in front of the embossing slot, and homogenously over the web width.

Very long carbon emitters are also advantageous in the heating of coatings on tracks, strips and rollers.

Long Carbon Emitters Increase Safety
Conventional medium wave infrared emitters offer powers up to 60kW/m² with reaction times of the order of 2-3 minutes. In the event of an unanticipated stoppage of the conveyor belt, conventional medium wave emitters need to be swivelled away or screened, both actions taking some time, in order to prevent damage to the web. Carbon emitters have power ratings up to 150 kW/m², they have reaction times of the order of seconds and can be almost immediately switched off in the event of belt stoppage.
Heraeus Noblelight offers the complete palette of infrared from NIR near infrared to CIR medium wave carbon infrared, carries out trials with materials to be heated and advises on the selection of the optimum emitter for specific processes.

Heraeus has more than 40 years experience of infrared emitters, both for end-users and for large OEMs. It carries out practical tests and trials using customers’ own materials in its in-house Application Centres, to establish the best process solutions.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of speciality light sources. In 2008, Heraeus Noblelight had an annual turnover of 92.5 Million € and employed 735 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues approaching € 3 billion and precious metal trading revenues of € 13 billion, as well as over 13,000 employees in more than 110 companies worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>