Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Most Powerful Carbon Infrared Emitter in the World

08.12.2009
  • CIR® carbon infrared emitters heat plastics, glass or water with particularly high efficiency
  • Heraeus Noblelight now produces carbon infrared emitters in a new power class

For decades infrared emitters have been successfully used in industrial heating processes to dry coatings, form plastics and to manufacture solar cells. Since the 1990s, carbon infrared emitters have helped to save up to 30% in energy consumption in many processes.


Heraeus Photo
The most powerful carbon infrared emitter currently is 2.5 metres long and has a nominal power rating of approximately 14 kW. Copyright Heraeus Noblelight 2009

In October, the manufacture of the world’s most powerful carbon infrared emitter was brought on stream at Heraeus Noblelight in Kleinostheim, Germany. Carbon emitters can now be manufactured in lengths up to 5 metres.

To date, the most powerful carbon emitters measure 2.5 metres long with a nominal power of around 14kW, which is twice the power output which could previously be achieved by carbon emitters of such lengths. New long, high power carbon emitters operating at the effective medium wavelength, with a very fast response time will give a homogenous and even heating in one length.

The wavelength of infrared radiation has a significant influence on the process. Shortwave radiation penetrates deeply into large components and heats these rapidly and evenly. Medium wave radiation is effectively intensified at surfaces and is also very easily absorbed by water, glass and many plastics so that it is readily directly converted into heat.

Changing over to medium wave carbon infrared emitters can help to provide significant savings in energy costs. Comprehensive tests demonstrate that carbon emitters require up to 30% less energy than conventional shortwave emitters in the drying of water-based paints and lacquers. The CIR® carbon emitter has been matchless on the market for years as it combines medium wavelength radiation at high power with very fast reaction times in heating coatings, glass and plastics.

When drawing, laminating, embossing or stamping foils, infrared emitters which cover the total web width are of great advantage. Carbon infrared emitters heat the surface of plastic materials exactly at the surface, for example directly in front of the embossing slot, and homogenously over the web width.

Very long carbon emitters are also advantageous in the heating of coatings on tracks, strips and rollers.

Long Carbon Emitters Increase Safety
Conventional medium wave infrared emitters offer powers up to 60kW/m² with reaction times of the order of 2-3 minutes. In the event of an unanticipated stoppage of the conveyor belt, conventional medium wave emitters need to be swivelled away or screened, both actions taking some time, in order to prevent damage to the web. Carbon emitters have power ratings up to 150 kW/m², they have reaction times of the order of seconds and can be almost immediately switched off in the event of belt stoppage.
Heraeus Noblelight offers the complete palette of infrared from NIR near infrared to CIR medium wave carbon infrared, carries out trials with materials to be heated and advises on the selection of the optimum emitter for specific processes.

Heraeus has more than 40 years experience of infrared emitters, both for end-users and for large OEMs. It carries out practical tests and trials using customers’ own materials in its in-house Application Centres, to establish the best process solutions.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology and market leaders in the production of speciality light sources. In 2008, Heraeus Noblelight had an annual turnover of 92.5 Million € and employed 735 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues approaching € 3 billion and precious metal trading revenues of € 13 billion, as well as over 13,000 employees in more than 110 companies worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Process Engineering:

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>