Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Polymer Coatings Prevent Corrosion, Even When Scratched

10.12.2008
Imagine tiny cracks in your patio table healing by themselves, or the first small scratch on your new car disappearing by itself. This and more may be possible with self-healing coatings being developed at the University of Illinois.

The new coatings are designed to better protect materials from the effects of environmental exposure. Applications range from automotive paints and marine varnishes to the thick, rubbery coatings on patio furniture and park benches.

“Starting from our earlier work on self-healing materials at the U. of I., we have now created self-healing coatings that automatically repair themselves and prevent corrosion of the underlying substrate,” said Paul Braun, a University Scholar and professor of materials science and engineering. Braun is corresponding author of a paper accepted for publication in the journal Advanced Materials, and posted on its Web site.

To make self-repairing coatings, the researchers first encapsulate a catalyst into spheres less than 100 microns in diameter (a micron is 1 millionth of a meter). They also encapsulate a healing agent into similarly sized microcapsules. The microcapsules are then dispersed within the desired coating material and applied to the substrate.

“By encapsulating both the catalyst and the healing agent, we have created a dual capsule system that can be added to virtually any liquid coating material,” said Braun, who also is affiliated with the university’s Beckman Institute, Frederick Seitz Materials Research Laboratory, department of chemistry, and Micro and Nanotechnology Laboratory.

When the coating is scratched, some of the capsules break open, spilling their contents into the damaged region. The catalyst and healing agent react, repairing the damage within minutes or hours, depending upon environmental conditions.

The performance of the self-healing coating system was evaluated through corrosion testing of damaged and healed coated steel samples compared to control samples that contained no healing agents in the coating.

Reproducible damage was induced by scratching through the 100-micron-thick polymer coating and into the steel substrate using a razor blade. The samples were then immersed in a salt solution and compared over time.

The control samples corroded within 24 hours and exhibited extensive rust formation, most prevalently within the groove of the scratched regions, but also extending across the substrate surface, the researchers report. In dramatic contrast, the self-healing samples showed no visual evidence of corrosion even after 120 hours of exposure.

“Our dual capsule healing system offers a general approach to self-healing coatings that operates across a broad spectrum of coating chemistries,” Braun said. “The microcapsule motif also provides a delivery mechanism for corrosion inhibitors, antimicrobial agents, and other functional chemicals.”

With Braun, the paper’s co-authors are U. of I. aerospace engineering professor and Beckman researcher Scott White, and former Beckman and materials science graduate student Soo Hyoun Cho. A company formed by Braun, White and other U. of I. researchers is exploring commercialization of the self-healing coatings technology.

The work was funded by Northrop Grumman Ship Systems, the U.S. Air Force Office of Scientific Research, and the Beckman Institute.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>