Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastics laser welding with TransTWIST for invisible weld seams

30.07.2010
The Fraunhofer Institute for Laser Technology ILT is presenting a laser welding machine for plastics at the International Plastics and Rubber Trade Fair. TransTWIST welds together two transparent joining partners without having to add any laser absorbers.

At this year’s plastics trade show in Düsseldorf (October 27 to November 3, 2010) the Fraunhofer ILT is presenting the TransTWIST laser-based plastics welding machine at the Fraunhofer-Gesellschaft stand (E91) in Hall 3. In live demonstrations the researchers will show how two transparent joining partners made of plastic can be lap-welded using laser radiation.

In conventional laser welding a suitable radiation absorber is normally applied to the underlying joining partner. This is time consuming and costly. Furthermore, the appearance of the component or weld is affected by the color of the radiation absorber.

Nearly invisible welds
In order to be able to weld transparent plastics without any seam marks, the researchers at the Fraunhofer ILT have developed a laser machine for welding plastics. In a lap joint configuration transparent polymers are welded without the addition of infrared absorbers. This eliminates the need for elaborate pretreatment, saving process time and costs, and represents a breakthrough in plastics laser welding. TransTWIST produces high-quality welds that meet all the usual requirements in terms of being free from weld marks and restricting the zone influenced by heat.

TransTWIST shows a great potential for use bio-biomedical field, especially microfluidics, packaging industry and in design applications.

Contacts at the Fraunhofer ILT
If you have any questions our experts will be pleased to assist:
Dipl.-Ing. Andrei Lucian Boglea
Micro Joining
Phone +49 241 8906-217
andrei.boglea@ilt.fraunhofer.de
Dr. Arnold Gillner
Manager of Expert Group Ablation and Joining
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121
www.ilt.fraunhofer.de
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer ILT
Further information:
http://www.ilt.fraunhofer.de

Further reports about: ILT Plastics TransTWIST information technology laser system

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>