Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The perfect cut

11.08.2009
The ability to cut onions into thin slices isn't just a matter of practice – choosing the right implement also helps make good onion rings.

The same principle applies when cutting silicon blocks to make wafers for solar cells. You need a special slicing tool to produce paper-thin wafers from silicon blocks ("ingots"): reminiscent of an egg slicer, a filigree wire is used to cut through the ingot at a speed of up to 60 km/h.

This wire is several hundred kilometers long and arranged in such a way that the ingot is sliced into hundreds of wafers simultaneously. The process takes around six hours and the resultant slices are approximately 180 µm thick.

Dr. Rainer Kübler, business unit manager at the Fraunhofer Institute for Mechanics of Materials IWM, explains: "When slicing the wafers, the challenge is to reduce the saw gap width." The space between two wafers is governed by the thickness of the wire. The steel wire is wetted with a type of paste ("slurry"), a mixture of silicon carbide and polyethylene glycol. This is harder than silicon and cuts through the ingot. The gap arises where the silicon is reduced to powder during cutting. "Gap widths are currently around 180 µm," says Kübler, "which means that given a wafer thickness of 180 µm, we generate the same amount of waste for each silicon slice.

That's inefficient." The researchers "want to achieve smaller saw gap widths of around 100 µm, which are also suitable for industrial applications." In a project funded by the federal ministry for the environment (BMU), they are currently studying the abrasion process and contact regimes using a single-wire saw and are principally interested in the interactions between the wire, the slurry and the silicon. They are also using computer modeling to simulate different configurations. What forces are at work when sawing with thin wires? How can one ensure the wire is well wetted? What is the best grain size for the slurry and how must the particles be distributed?

"We want to answer all these questions and ultimately arrive at optimal wire and slurry systems that are suitable for industrial applications," says Kübler. The researchers are currently striving to achieve gap widths of 90 µm, which would represent a huge increase in efficiency as waste would be halved.

Rainer Kuebler | EurekAlert!
Further information:
http://www.iwm.fraunhofer.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>