Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paging Han Solo: Researchers Find More Efficient Way To Steer Laser Beams

03.05.2011
For many practical applications involving lasers, it’s important to be able to control the direction of the laser beams. Just ask Han Solo, or the captain of the Death Star. Researchers from North Carolina State University have come up with a very energy-efficient way of steering laser beams that is precise and relatively inexpensive.

“In many cases, it is much easier to redirect a laser beam at a target than to steer the laser itself. We intended to develop a way to do this efficiently and without moving anything,” says Dr. Michael Escuti, an associate professor of electrical engineering at NC State and co-author of a paper on the research. “We also wanted to be able to steer the beams over a wide range of angles, which is important for practical applications.”

The key to the Escuti team’s success was the use of “polarization gratings,” which consist of a thin layer of liquid crystal material on a glass plate. The researchers created a device that allows a laser beam to pass through a stack of these polarization gratings. Researchers manipulated the optical properties of each grating, and were able to steer the laser beams by controlling how each individual grating redirects the light. “Because each individual grating is very good at redirecting light in the desired directions with almost no absorption, the stack of gratings do not significantly weaken the laser power,” Escuti says.

Another advantage of the system, Escuti explains, is that “every grating that we add to the stack increases the number of steerable angles exponentially. So, not only can we steer lasers efficiently, but we can do it with fewer components in a more compact system.

“Compared to other laser steering technologies, this is extremely cost-effective. We’re taking advantage of materials and techniques that are already in widespread use in the liquid crystal display sector.”

The technology has a variety of potential applications. For example, free space communication uses lasers to transfer data between platforms – such as between satellites or between an aircraft and soldiers on the battlefield. This sort of communication relies on accurate and efficient laser-beam steering. Other technologies that could make use of the research include laser weapons and LIDAR, or laser radar, which uses light for optical scanning applications – such as mapping terrain.

Escuti’s team has already delivered prototypes of the technology to the U.S. Air Force, and is currently engaged in additional research projects to determine the technology’s viability for a number of other applications.

The paper, “Wide-angle, nonmechanical beam steering with high-throughput utilizing polarization gratings,” was co-authored by Escuti; NC State Ph.D. student Jihwan Kim; former NC State Ph.D. student Chulwoo Oh; and Steve Serati of Boulder Nonlinear Systems, Inc. The paper is published in the journal Applied Optics. The research was funded by the U.S. Air Force Research Laboratory.

NC State’s Department of Electrical and Computer Engineering is part of the university’s College of Engineering.

-shipman-

Note to Editors: The study abstract follows.

“Wide-angle, nonmechanical beam steering with high-throughput utilizing polarization gratings”

Authors: Jihwan Kim, Chulwoo Oh, Michael J. Escuti, North Carolina State University; Steve Serati, Boulder Nonlinear Systems, Inc.

Published: May 1 in Applied Optics

Abstract: We introduce and demonstrate a ternary nonmechanical beam steering device based on Polarization Gratings (PGs). Our beam steering device employs multiple stages consisting of combinations of PGs and Wave Plates (WPs), that allows for a unique three-way (ternary) steering design. Ultra-high efficiency (~ 100%) and polarization sensitive diffraction of individual PGs allow wide steering angles (among three diffracted orders) with extremely high throughput. We report our successful demonstration of the three-stage beam steerer having 44[degree] field-of-regard with 1.7[degree] resolution at 1550 nm wavelength. A substantially high throughput of 78% ? 83% is observed that is mainly limited by electrode absorption and Fresnel losses.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>