Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical Materials Express focus issue on femtosecond direct laser writing

24.08.2011
Research highlights advanced femtosecond laser systems, 3-D multi-functional photonic devices

Current advanced femtosecond laser systems offer myriad possibilities to modify materials, from implementing new optical functionality to improving existing materials properties.

Femtosecond direct laser writing exhibits enormous potential in the development of a new generation of powerful components in 3-D for micro-optics, telecommunications, optical data storage, imaging, micro-fluidics, and biophotonics at the micro- and nano-scale. To highlight breakthroughs in femtosecond laser systems, the editors of the Optical Society's (OSA) open-access journal Optical Materials Express have published a special Focus Issue on Femtosecond Direct Laser Writing and Structuring of Materials (http://www.opticsinfobase.org/ome/virtual_issue.cfm?vid=142).

The issue is organized and edited by Guest Editors Thierry Cardinal of France's University of Bordeaux, Bertrand Poumellec of the University of Paris-Sud XI, and Kazuyuki Hirao of Kyoto University, Japan.

"At a time when many different scientific communities are getting involved in the field of femtosecond laser writing, this focus issue aims to give readers an overview of the current, state-of-the-art research being done," said Cardinal. "The focus issue includes original papers and reviews from leading groups on fabrication processes, related mechanisms, and photo-produced structures."

Summary

Femtosecond Direct Laser Writing, which relies on non-equilibrium synthesis and processing with photon beams, opens up new ways to create materials and devices that are not currently possible with established techniques. The main advantage remains in the potential to realize 3-D multi-functional photonic devices, fabricated in a wide range of transparent materials. The papers in this issue focus on fabrication processes, related mechanisms, and photo-produced structures, taking into account physical and chemical aspects.

Key Findings & Select Papers

- Researchers from the University of Bordeaux and the University of Central Florida provide a review of recent advances in photochemistry in transparent optical materials induced by femtosecond laser pulses. This paper illustrates the importance of the temperature for material structuring using femtosecond lasers. Arnaud Royon et al. show that the temperature becomes a key parameter that determines the final state and the purpose of the material. Paper: "Femtosecond laser induced photochemistry in materials tailored with photosensitive agents," Optical Materials Express, Vol. 1, Issue 5, pp.866-882. http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-1-5-866

A group of researchers from the Optoelectronics Research Centre at Southampton present a review of recent progress in applications of femtosecond laser nano-structuring of fused silica. The paper focuses on polarization controlling devices written with self-assembled nanograting. Martynas Beresna et al. discuss how femtosecond laser direct writing can be used for fabricating complex optical devices in a single step. This research will open new opportunities for precise control of induced birefringence, which can be widely used in material processing, microscopy, and optical trapping and manipulation. Paper: "Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass," Optical Materials Express, Vol. 1, Issue 4, pp.783-795. http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-1-4-783

Research conducted in collaboration between the University of California Davis, the Missouri University of Science and Technology, and the Dipartimento di Fisica del Politecnico di Milano has investigated, in the scope of femtosecond laser writing of waveguides in phosphate glass, the relationship between the initial glass composition and the structural changes associated with laser-induced refractive index modification. Luke B. Fletcher et al. have shown that the initial glass structure plays a very important role in the resulting change to refractive index and is a fundamental parameter for predicting how the glass will respond to the absorption of tightly focused fs-laser pulses. Paper: "Femtosecond laser writing of waveguides in zinc phosphate glasses," Optical Materials Express, Vol. 1, Issue 5, pp.845-855. http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-1-5-845

A research group from the University of Laval in Canada has shown new physical insight into the 1-D optical multi-filamentation process allowing for the inscription of high-quality first-order Fiber Bragg Gratings with femtosecond pulses and a phase mask. This approach has been validated for both silica fiber and fluoride glass fibers. Results by Martin Bernier et al. show the huge potential of femtosecond pulses in the filamentation regime to write first-order Fiber Bragg Gratings in various materials. Paper: "Role of the 1D optical filamentation process in the writing of first order fiber Bragg gratings with femtosecond pulses at 800nm," Optical Materials Express, Vol. 1, Issue 5, pp.832-844. http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-1-5-832

Yves Bellouard of Eindhoven University of Technology demonstrates that femtosecond lasers can efficiently be used to produce arbitrarily shaped high-strength mechanical devices, opening new opportunities for the design of monolithically integrated optomechanical devices. The paper reports on the mechanical properties of fused silica flexures manufactured by a two-step process combining femtosecond laser exposure below the ablation threshold and chemical etching. This creative approach paves the way toward increased monolithic integration where features as diverse as gratings, waveguides, mechanical flexures, and fluidic channels can be made out of a single substrate while reducing the number of fabrication steps. Paper: "On the bending strength of fused silica flexures fabricated by ultrafast lasers," Optical Materials Express, Vol. 1, Issue 5, pp.816-831. http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-1-5-816

About Optical Materials Express

Optical Materials Express (OMEx) is OSA's newest peer-reviewed, open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx, which launched in April 2011, primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. For more information, visit www.OpticsInfoBase.org/OMEx.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>