Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology for mass-production of complex molded composite components

23.01.2017
  • The PulPress method allows manufacturers to produce complex molded parts in high volumes
  • Savings of up to 60 percent over previous lightweight construction methods
  • Initial components are now on their way to mass production

The automotive industry is increasingly looking to composite materials as a way of reducing vehicle weight and CO2 emissions. Up to now, however, these materials have mostly been used in luxury-class vehicles, as established methods are expensive and complex.


A composite part made by the PulPress method from a structural foam core ROHACELL® woven around with fibers is about 75 percent lighter than traditional steel structures.

Evonik

With Evonik’s newly developed PulPress method, however, things are different: now manufacturers can mass-produce complex molded parts at a reasonable price, taking the technology from the high-end market to large-scale production.

The new method combines two traditional production techniques: compression molding and pultrusion. Combined together, they make automated, continuous production of composite parts possible. The most important raw material in the process is ROHACELL®, a high-performance structural foam core from Evonik that has already proven its merit as a lightweight yet rigid material—one that retains its shape particularly well and is temperature resistant.

Fibers are woven around the core before being impregnated with resin. The complete system is then compressed into the desired shape at high temperature and pressure. The method even allows manufacturers to produce complex geometries and integrate recessed areas for threaded components or other fixtures.

Particularly impressive aspects of the new manufacturing process include its design flexibility and cost efficiency, and the crash behavior of the resulting composite parts—parts that are around 75 percent lighter than traditional steel structures. Plus, the PulPress method also reduces costs by up to 60 percent compared to composite parts manufactured using established methods such as resin injection.

“These advantages have already won over a large number of customers in the European automotive industry,” says Dr. Sivakumara Krishnamoorthy, manager for new applications in Evonik’s Resource Efficiency Segment. “Molded parts made using PulPress will soon be going into mass production.”

The process is also of interest to manufacturers outside of the auto industry. It could conceivably be applied in aircraft construction as a cost-effective method for producing large numbers of carry-over parts. Finally, lightweight sandwich cores are also becoming more and more important in sports equipment.

Find out more about the PulPress method at JEC World, March 14 – 16, 2017, in Paris, Hall 5A, H44.

Weitere Informationen:

http://www.evonik.com/press-releases

Edda Schulze | idw - Informationsdienst Wissenschaft

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>