Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology for mass-production of complex molded composite components

23.01.2017
  • The PulPress method allows manufacturers to produce complex molded parts in high volumes
  • Savings of up to 60 percent over previous lightweight construction methods
  • Initial components are now on their way to mass production

The automotive industry is increasingly looking to composite materials as a way of reducing vehicle weight and CO2 emissions. Up to now, however, these materials have mostly been used in luxury-class vehicles, as established methods are expensive and complex.


A composite part made by the PulPress method from a structural foam core ROHACELL® woven around with fibers is about 75 percent lighter than traditional steel structures.

Evonik

With Evonik’s newly developed PulPress method, however, things are different: now manufacturers can mass-produce complex molded parts at a reasonable price, taking the technology from the high-end market to large-scale production.

The new method combines two traditional production techniques: compression molding and pultrusion. Combined together, they make automated, continuous production of composite parts possible. The most important raw material in the process is ROHACELL®, a high-performance structural foam core from Evonik that has already proven its merit as a lightweight yet rigid material—one that retains its shape particularly well and is temperature resistant.

Fibers are woven around the core before being impregnated with resin. The complete system is then compressed into the desired shape at high temperature and pressure. The method even allows manufacturers to produce complex geometries and integrate recessed areas for threaded components or other fixtures.

Particularly impressive aspects of the new manufacturing process include its design flexibility and cost efficiency, and the crash behavior of the resulting composite parts—parts that are around 75 percent lighter than traditional steel structures. Plus, the PulPress method also reduces costs by up to 60 percent compared to composite parts manufactured using established methods such as resin injection.

“These advantages have already won over a large number of customers in the European automotive industry,” says Dr. Sivakumara Krishnamoorthy, manager for new applications in Evonik’s Resource Efficiency Segment. “Molded parts made using PulPress will soon be going into mass production.”

The process is also of interest to manufacturers outside of the auto industry. It could conceivably be applied in aircraft construction as a cost-effective method for producing large numbers of carry-over parts. Finally, lightweight sandwich cores are also becoming more and more important in sports equipment.

Find out more about the PulPress method at JEC World, March 14 – 16, 2017, in Paris, Hall 5A, H44.

Weitere Informationen:

http://www.evonik.com/press-releases

Edda Schulze | idw - Informationsdienst Wissenschaft

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>