Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Material Coating Technology Mimics Nature’s Lotus Effect

22.04.2014

Virginia Tech mechanical engineer develops new low-cost material coating technique

Ever stop to consider why lotus plant leaves always look clean? The hydrophobic – water repelling – characteristic of the leaf, termed the “Lotus effect,” helps the plant survive in muddy swamps, repelling dirt and producing beautiful flowers.


Of late, engineers have been paying more and more attention to nature’s efficiencies, such as the Lotus effect, and studying its behavior in order to make advances in technology. As one example, learning more about swarming schools of fish is aiding in the development of unmanned underwater vehicles. Other researchers are observing the extraordinary navigational abilities of bats that might lead to new ways to reconfigure aviation highways in the skies.

Ranga Pitchumani , professor of mechanical engineering at Virginia Tech and currently on an invitational assignment as the chief scientist and director of the Concentrating Solar Power and Systems Integration programs of the U.S. Department of Energy’s SunShot Initiative www.solar.energy.gov, would like to see more efficiencies and clever designs in technology. His work reflects this philosophy.

... more about:
»Chemical »Laboratory »Material »PCT »bats »copper »energy »resistance »run »surfaces

His recent development of a type of coating for materials that has little to no affinity for water emulates the Lotus effect. Commonplace material coatings are as simple as paints and varnishes. More sophisticated coatings might be used for resistance to corrosion, fire, or explosives.

The American Chemical Society recognized the impact of the work of Pitchumani and Atieh Haghdoost, a recent doctoral graduate from Pitchumani’s Advanced Materials and Technologies Laboratory (www.me.vt.edu/amtl), featuring their research on the cover of its April 15 issue of the publication Langmuir, a highly-cited, peer reviewed journal. The article can be found at: http://pubs.acs.org/doi/abs/10.1021/la403509d, which includes a video demonstration of the coating

Using a two-step technique, “We produced a low-cost and simple approach for coating metallic surfaces with an enduring superhydrophobic (strong water repellant) film of copper,” Pitchumani explained. Copper allows for high heat and electrical conductivity, and is the material of choice in many engineering applications such as heat exchangers and electronic circuit boards.

Numerous methods currently exist to produce coating surfaces that for all practical purposes do not get wet as the water droplets run off the material. A few examples are: spraying; self-assembly where molecules spontaneously organize themselves into a structure; and laser etching.

But Pitchumani and Haghdoost explained their method “differs in that their two-step process is used to directly make superhydrophobic copper coatings without the more costly need for an additional layer of a low surface energy material.”

The two-step process uses a common coating technique called electrodeposition. Again, they have a distinction – the difference from previous manufacturing practices is that Pitchumani and Haghdoost do not use a template that can adversely affect the texture of the coating that is deposited on the surface of the material or substrate. Their template-free process allows the coating material to be made of the same material as the substrate, thereby preserving its thermal and electrical properties.

The possibilities for the technology are huge. The coatings can minimize or eliminate “fouling” – dirt and grime accumulation – in heat exchangers, reduce pressure drop in flow through tubes, provide improved corrosion resistance, and mitigate creep failure in electronic printed circuit board applications. They currently have an international patent pending (PCT/US2014/016312), that was filed through the Virginia Tech Intellectual Property office.

In the future, they hope to expand the nature-inspired innovation to materials other than copper.

Lynn Nystrom | newswise

Further reports about: Chemical Laboratory Material PCT bats copper energy resistance run surfaces

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>