Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brooms sweep clean – innovative nondestructive testing en route to standardization

09.10.2014

Nondestructive tests find defects that remain hidden to the naked eye, for example, defective weld connections, cracks in the material, voids or inclusions. Fraunhofer IZFP is currently preparing standardization of inductively excited thermography, a novel nondestructive inspection method. This procedure is to be configured as a replacement for magnetic particle testing.

The industrial demand for manufacturing-accompanying nondestructive inspection by standardized methods has grown steadily in recent years. Compared to established standardized procedures novel approaches of nondestructive testing methods offer tremendous progress and improvements such as shorter testing times, high automation, reduced equipment and training costs, lower susceptibility to operating error, among other things.


Robotics-assisted thermography at a rail wheel

Uwe Bellhäuser

Nevertheless, their comprehensive industrial spread is hindered by a lack of standards and standardization. So often the user cannot provide proof of test equipment aptitude of the procedure for the specific problem because of high costs, lack of resources and/or lack of interdisciplinary methodological skills.

In particular, SMEs as suppliers are facing reasoning difficulties for warranting the use of non-standard test methods or even expose themselves to a high degree of financial risk. Thus, existing potential savings in time and expense while improving quality cannot be exploited, whereby the position of German SMEs in the global economic system is weakened.

Inductively excited thermography is a not yet standardized but already widespread alternative to traditional magnetic particle testing (MT). The test method is ideal for fully automatic semifinished goods inspection of metallic parts and components.

Unlike MT, inductive thermography provides the evaluation of the defect depth. Moreover, in most cases there is no need to remove surface coatings and the subsequent cleaning of the surface is completely eliminated. To date, also in this case a comprehensive acceptance is, however, obstructed by the lack of standardization.

In the near future, engineers of the Fraunhofer Institute for Nondestructive Testing IZFP in Saarbrücken together with industry representatives will work out specific solutions that will pave the way for standards and standardization of new inspection methods.

The general objective of this project is to strengthen the competitiveness in particular of small and medium-sized enterprises. To this, amongst others a standardization procedure for the inductive thermography is triggered, the conclusion will significantly facilitate access to this inspection technology.

Represented by the Institute for Standardization e. V. (DIN) and the German Aerospace Center (DLR) as executing agencies, the research project is funded since September 2014 to February 2016 by the Federal Ministry of Education and Research (BMBF) with more than 100,000 euros.

Weitere Informationen:

http://www.fraunhofer.de/en.html

Sabine Poitevin-Burbes | Fraunhofer-Institut

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>