Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brooms sweep clean – innovative nondestructive testing en route to standardization

09.10.2014

Nondestructive tests find defects that remain hidden to the naked eye, for example, defective weld connections, cracks in the material, voids or inclusions. Fraunhofer IZFP is currently preparing standardization of inductively excited thermography, a novel nondestructive inspection method. This procedure is to be configured as a replacement for magnetic particle testing.

The industrial demand for manufacturing-accompanying nondestructive inspection by standardized methods has grown steadily in recent years. Compared to established standardized procedures novel approaches of nondestructive testing methods offer tremendous progress and improvements such as shorter testing times, high automation, reduced equipment and training costs, lower susceptibility to operating error, among other things.


Robotics-assisted thermography at a rail wheel

Uwe Bellhäuser

Nevertheless, their comprehensive industrial spread is hindered by a lack of standards and standardization. So often the user cannot provide proof of test equipment aptitude of the procedure for the specific problem because of high costs, lack of resources and/or lack of interdisciplinary methodological skills.

In particular, SMEs as suppliers are facing reasoning difficulties for warranting the use of non-standard test methods or even expose themselves to a high degree of financial risk. Thus, existing potential savings in time and expense while improving quality cannot be exploited, whereby the position of German SMEs in the global economic system is weakened.

Inductively excited thermography is a not yet standardized but already widespread alternative to traditional magnetic particle testing (MT). The test method is ideal for fully automatic semifinished goods inspection of metallic parts and components.

Unlike MT, inductive thermography provides the evaluation of the defect depth. Moreover, in most cases there is no need to remove surface coatings and the subsequent cleaning of the surface is completely eliminated. To date, also in this case a comprehensive acceptance is, however, obstructed by the lack of standardization.

In the near future, engineers of the Fraunhofer Institute for Nondestructive Testing IZFP in Saarbrücken together with industry representatives will work out specific solutions that will pave the way for standards and standardization of new inspection methods.

The general objective of this project is to strengthen the competitiveness in particular of small and medium-sized enterprises. To this, amongst others a standardization procedure for the inductive thermography is triggered, the conclusion will significantly facilitate access to this inspection technology.

Represented by the Institute for Standardization e. V. (DIN) and the German Aerospace Center (DLR) as executing agencies, the research project is funded since September 2014 to February 2016 by the Federal Ministry of Education and Research (BMBF) with more than 100,000 euros.

Weitere Informationen:

http://www.fraunhofer.de/en.html

Sabine Poitevin-Burbes | Fraunhofer-Institut

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>