Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoshaping method points to future manufacturing technology

12.12.2014

A new method that creates large-area patterns of three-dimensional nanoshapes from metal sheets represents a potential manufacturing system to inexpensively mass produce innovations such as "plasmonic metamaterials" for advanced technologies.

The metamaterials have engineered surfaces that contain features, patterns or elements on the scale of nanometers that enable unprecedented control of light and could bring innovations such as high-speed electronics, advanced sensors and solar cells.

The new method, called laser shock imprinting, creates shapes out of the crystalline forms of metals, potentially giving them ideal mechanical and optical properties using a bench-top system capable of mass producing the shapes inexpensively

Findings are detailed in a research paper appearing Friday (Dec. 12) in the journal Science. The paper is authored by researchers from Purdue University, Harvard University, Madrid Institute for Advanced Studies, and the University of California, San Diego. The research is led by Gary Cheng, an associate professor of industrial engineering at Purdue.

The shapes, which include nanopyramids, gears, bars, grooves and a fishnet pattern, are too small to be seen without specialized imaging instruments and are thousands of times thinner than the width of a human hair. The researchers used their technique to stamp nanoshapes out of titanium, aluminum, copper, gold and silver.

A key benefit of the shock-induced forming is sharply defined corners and vertical features, or high-fidelity structures.

"These nanoshapes also have extremely smooth surfaces, which is potentially very advantageous for commercial applications," Cheng said. "Traditionally it has been really difficult to deform a crystalline material into a nanomold much smaller than the grain size of starting materials, and due to the size effects the materials are super-strong when grain size has to be reduced to very small sizes. Therefore, it is very challenging to generate metal flow into nanomolds with high-fidelity 3-D shaping."

The researchers also created hybrid structures that combine metal with graphene, an ultrathin sheet of carbon promising for various technologies. Such a hybrid material could enhance the plasmonic effect and bring "metamaterial perfect absorbers," or MPAs, which have potential applications in optoelectronics and wireless communications.

"We can generate nanopatterns on metal-graphene hybrid materials, which opens new ways to pattern 2-D crystals," Cheng said.

The technique works by using a pulsed laser to generate "high strain rate" imprinting of metals into the nanomold.

"We start with a metal thin film, and we can deform it into 3-D nanoshapes patterned over large areas," Cheng said. "What is more interesting is that the resulting 3-D nanostructures are still crystalline after the imprinting process, which provides good electromagnetic and optical properties."

Whereas other researchers have created nanoshapes out of relatively soft or amorphous materials, the new research shows how to create nanoshapes out of hard and crystalline metals.

The silicon nanomolds were fabricated at the Birck Nanotechnology Center in Purdue's Discovery Park by a research group led by Minghao Qi, an associate professor of electrical and computer engineering.

"It is counter-intuitive to use silicon for molds because it is a pretty brittle material compared to metals," Qi said. "However, after we deposit an ultrathin layer of aluminum oxide on the nanomolds, it performs extremely well for this purpose. The nanomolds could be reused many times without obvious damage. Part of the reason is that although the strain rate is very high, the shock pressure applied is only about 1-2 gigapascals."

The shapes were shown to have an "aspect ratio" as high as 5, meaning the height is five times greater than the width, an important feature for the performance of plasmonic metamaterials.

"It is a very challenging task from a fabrication point of view to create ultra-smooth, high-fidelity nanostructures," Qi says. "Normally when metals recrystallize they form grains and that makes them more or less rough. Previous trials to form metal nanostructures have had to resort to very high pressure imprinting of crystalline metals or imprinting amorphous metal, which either yields high roughness in crystalline metals or smooth surfaces in amorphous metals but very high electrical resistance. For potential applications in nanoelectronics, optoelectronics and plasmonics you want properties such as high precision, low electromagnetic loss, high electrical and thermal conductivity. You also want it to be very high fidelity in terms of the pattern, sharp corners, vertical sidewalls, and those are very difficult to obtain. Before Gary's breakthrough, I thought it unlikely to achieve all of the good qualities together."

The paper was authored by Purdue doctoral students Huang Gao, Yaowu Hu, Ji Li, and Yingling Yang; researcher Ramses V. Martinez from Harvard and Madrid Institute for Advanced Studies; Purdue research assistant professor Yi Xuan, Purdue research associate Chunyu Li; Jian Luo, a professor at the University of California, San Diego; Qi and Cheng.

Future research may focus on using the technique to create a roll-to-roll manufacturing system, which is used in many industries including paper and sheet-metal production and may be important for new applications such as flexible electronics and solar cells.

The work was supported by the National Science Foundation, National Institutes of Health, Defense Threat Reduction Agency, Office of Naval Research and the National Research Council.

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Gary J. Cheng, 765-494-5436, gjcheng@purdue.edu

Minghao Qi, 765-494-3646, mqi@purdue.edu

Note to Journalists: A copy of the article is available by contacting the Science Press Package team at 202-326-6440, scipak@aaas.org

ABSTRACT

Large Scale Nanoshaping of Ultrasmooth 3D Crystalline Metallic Structures

Huang Gao1,3,*, Yaowu Hu1,3,*, Yi Xuan2,3,*, Ji Li1,3, Yingling Yang1,3, Ramses V. Martinez4,5, Chunyu Li3,6, Jian Luo7, Minghao Qi2,3, Gary J. Cheng1,3,8†

1 School of Industrial Engineering, Purdue University

2 School of Electrical and Computer Engineering, Purdue University

3 Birck Nanotechnology Center, Purdue University

4 Department of Chemistry and Chemical Biology, Harvard University

5 Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco

6 School of Materials Engineering, Purdue University

7 Department of NanoEngineering, University of California San Diego

8 School of Mechanical Engineering, Purdue University

* These authors contributed equally to this work

† Corresponding author. E-mail: gjcheng@purdue.edu

This paper reports a low-cost, high-throughput, benchtop method that enables thin layers of metal to be shaped with nanoscale precision by generating ultrahigh-strain-rate deformations. Laser shock imprinting can create 3D crystalline metallic structures as small as 10 nm with ultrasmooth surfaces at ambient conditions. This technique enables the successful fabrications of large-area, uniform nanopatterns with aspect ratios as high as 5 for plasmonic and sensing applications, as well as mechanically strengthened nanostructures and metal-graphene hybrid

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q4/nanoshaping-method-points-to-future-manufacturing-technology.html

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>