Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New market opportunities for the European tooling industry by automated polishing

16.09.2010
Automated polishing processes can reduce the processing time of manual polishing by a factor of at least 10. Therefore an international consortium of companies and R&D centers coordinated by Fraunhofer has launched a 3.9 Million Euro project called poliMATIC.

The goal of the 3 years R&D project funded by the European Commission is to reduce the manufacturing costs of tools and to overcome the problem of missing skilled and experienced workers for manual polishing. The project partners thereby aim to open new market opportunities for the European tooling industry.

The tooling industry in Europe represents an annual turnover of 13 billion Euros. For the manufacturing of injection and die casting moulds 12 to 15 % of the manufacturing costs and 30 to 50 % of the manufacturing time fall upon to the polishing. The predominantly small and medium sized European companies specialized in polishing dies and moulds are currently facing a low-cost competition with Asia. Furthermore moving the surface finishing of the tools out of Europe is often only the first step - frequently the whole added value of the tool manufacturing is moving in a second step.

To eliminate these drawbacks a European consortium of innovative companies and R&D centers launched a 3.9 Million Euro project called poliMATIC in June 2010. This SME targeted collaborative project is funded for 3 years by the European Commission and coordinated by the Fraunhofer Institute for Laser Technology ILT and the Fraunhofer Institute for Production Technology IPT in Aachen, Germany.

The overall objective of poliMATIC is the development of two automated polishing techniques with a significant shorter processing time than manual polishing (between 10 to 30 times shorter) and full CAD/CAM compatibility. With these techniques the experienced workers in SME´s specialized in polishing can focus on the more complex parts of a tool.

The roughness of the surface of dies and moulds is a crucial factor to meet the requirements of various applications. Therefore in the European tooling industry polishing techniques are widely used to achieve a suitable low surface roughness. However, the current automated techniques are predominantly based on large-area abrasion, such as electro polishing, electro-chemical polishing or drag finishing. They typically present a non-uniform polishing quality on the moulds and dies and lead to edge rounding and geometrical deviations. Furthermore deeper cavities are hardly to process. Therefore the current automated techniques are almost not applicable on parts with free-form surfaces and function relevant edges like most tools feature.

Thus polishing in the tooling industry is mostly done manually. The quality of manual polishing strongly depends on the worker’s skills and experiences to execute a very demanding but monotone work. The scarce presence of skilled craftsmen on the market generates problems to companies all over Europe to recruit suitable employees. Due to the low processing speed (typically in the range of 10 to 30 min/cm²) and the sequential workflow, the production of moulds and dies with manual polishing is time-consuming and cost-intensive.

Having outstanding advantages, the two proposed technological approaches in the project poliMATIC, both laser polishing (LP) and force-controlled robot polishing (FCRP), offer the prospect of strengthening the competitiveness of the European tooling industry by shorter process times for surface finishing. The project partners - 3 institutes and 12 companies from 8 countries - intend to implement with LP and FCRP automated polishing techniques in the production of high added value products.

During the project poliMATIC processing strategies for 3D parts and a knowledge-based CAx-framework will be developed. Another task of the project is the long time test of automated polished tools. In order to assess the automated polishing techniques in comparison to manual polishing, new measurable surface quality criteria will also be investigated. The results of the poliMATIC project will be demonstrated by automated polished complex shaped moulds and dies from industrial partners.

Contacts:
If you have any questions regarding this topic, please feel free to contact our experts:
Dr.-Ing. Edgar Willenborg
Laser Polishing
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15, 52074 Aachen, Germany
Phone +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de
M.Sc. André Drimeyer Wilbert
Robot Polishing
Fraunhofer Institute for Production Technology IPT
Steinbachstraße 17, 52074 Aachen, Germany
Phone +49 241 8904-441
andre.wilbert@ipt.fraunhofer.de

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de
http://www.ipt.fraunhofer.de

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>