Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manufacturing technology: The vibration that smoothes

19.09.2011
Vibration-assisted milling can lead to higher-quality surfaces

In conventional milling operations, a workpiece on a table is typically fed past a rotating multi-tooth cutter, and the entire surface is processed by making a series of overlapping passes. This procedure, however, tends to leave unmilled remnants of material along the edges of the tool path, compromising the quality of the finished surface.

Jeong Hoon Ko and Kah Chuan Shaw at the A*STAR Singapore Institute of Manufacturing Technology in collaboration with colleagues at Nanyang Technological University have now shown that inducing ultrasonic vibration during high-speed milling of small metal products can lead to smoother, higher-quality surfaces1.

Vibration-assisted machining has been applied in the past, but mainly to turning or lathing applications, in which the spindle speed was much lower than the vibration frequency. Even when vibration assistance was applied experimentally in milling, the tool spindles turned far slower than the vibration. In contrast, Ko and his co-workers experimentally applied ultrasonic vibrations in a high-speed micromilling system where the rotation frequency of the cutter was much faster than the frequency of vibration.

The researchers established two different test rigs on which they could evaluate the effect of vibration assistance on the machined surfaces. They proceeded to run tests with and without vibrations, in line with and across the direction of the feed. They applied a wide range of spindle speeds and used tool paths with a confined width and depth.

Ko and his co-workers found that the height of the remnant material, called ‘cusp’, can be reduced by applying ultrasonic vibration during high-speed milling with narrow tool paths and removal depths of less than one millimeter, improving the quality of the milled surface considerably. The effect was greater when feed-directional vibration was applied to the material than when the vibration was applied across or perpendicular to the feed, which resulted in the formation of wavy burrs. By comparing and analyzing the feed and cross-feed directional effects using advanced simulations, more accurate recommendations for surface quality improvement could be made. The team also showed that the level of surface roughness is dependent on a combination of factors including feed rate and tool profile, in addition to vibration and tool speed.

“We want to devise a new design that can enhance machining quality by tuning the vibration assistance direction,” says Ko. “Furthermore, we will test novel implementations, including a multiple-cutting mechanism. There are potential commercial applications for precision engineering using our vibration scheme in the die/mold, biomedical and electronics industries.”

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

References

Ko, J. H., Shaw, K. C., Chua, H .K. & Lin, R. M. Cusp error reduction under high-speed micro/meso-scale milling with ultrasonic vibration assistance. International Journal of Precision Engineering and Manufacturing 12, 15–20 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>