Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manufacturing technology: The vibration that smoothes

19.09.2011
Vibration-assisted milling can lead to higher-quality surfaces

In conventional milling operations, a workpiece on a table is typically fed past a rotating multi-tooth cutter, and the entire surface is processed by making a series of overlapping passes. This procedure, however, tends to leave unmilled remnants of material along the edges of the tool path, compromising the quality of the finished surface.

Jeong Hoon Ko and Kah Chuan Shaw at the A*STAR Singapore Institute of Manufacturing Technology in collaboration with colleagues at Nanyang Technological University have now shown that inducing ultrasonic vibration during high-speed milling of small metal products can lead to smoother, higher-quality surfaces1.

Vibration-assisted machining has been applied in the past, but mainly to turning or lathing applications, in which the spindle speed was much lower than the vibration frequency. Even when vibration assistance was applied experimentally in milling, the tool spindles turned far slower than the vibration. In contrast, Ko and his co-workers experimentally applied ultrasonic vibrations in a high-speed micromilling system where the rotation frequency of the cutter was much faster than the frequency of vibration.

The researchers established two different test rigs on which they could evaluate the effect of vibration assistance on the machined surfaces. They proceeded to run tests with and without vibrations, in line with and across the direction of the feed. They applied a wide range of spindle speeds and used tool paths with a confined width and depth.

Ko and his co-workers found that the height of the remnant material, called ‘cusp’, can be reduced by applying ultrasonic vibration during high-speed milling with narrow tool paths and removal depths of less than one millimeter, improving the quality of the milled surface considerably. The effect was greater when feed-directional vibration was applied to the material than when the vibration was applied across or perpendicular to the feed, which resulted in the formation of wavy burrs. By comparing and analyzing the feed and cross-feed directional effects using advanced simulations, more accurate recommendations for surface quality improvement could be made. The team also showed that the level of surface roughness is dependent on a combination of factors including feed rate and tool profile, in addition to vibration and tool speed.

“We want to devise a new design that can enhance machining quality by tuning the vibration assistance direction,” says Ko. “Furthermore, we will test novel implementations, including a multiple-cutting mechanism. There are potential commercial applications for precision engineering using our vibration scheme in the die/mold, biomedical and electronics industries.”

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

References

Ko, J. H., Shaw, K. C., Chua, H .K. & Lin, R. M. Cusp error reduction under high-speed micro/meso-scale milling with ultrasonic vibration assistance. International Journal of Precision Engineering and Manufacturing 12, 15–20 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>