Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manufacturing technology: The vibration that smoothes

19.09.2011
Vibration-assisted milling can lead to higher-quality surfaces

In conventional milling operations, a workpiece on a table is typically fed past a rotating multi-tooth cutter, and the entire surface is processed by making a series of overlapping passes. This procedure, however, tends to leave unmilled remnants of material along the edges of the tool path, compromising the quality of the finished surface.

Jeong Hoon Ko and Kah Chuan Shaw at the A*STAR Singapore Institute of Manufacturing Technology in collaboration with colleagues at Nanyang Technological University have now shown that inducing ultrasonic vibration during high-speed milling of small metal products can lead to smoother, higher-quality surfaces1.

Vibration-assisted machining has been applied in the past, but mainly to turning or lathing applications, in which the spindle speed was much lower than the vibration frequency. Even when vibration assistance was applied experimentally in milling, the tool spindles turned far slower than the vibration. In contrast, Ko and his co-workers experimentally applied ultrasonic vibrations in a high-speed micromilling system where the rotation frequency of the cutter was much faster than the frequency of vibration.

The researchers established two different test rigs on which they could evaluate the effect of vibration assistance on the machined surfaces. They proceeded to run tests with and without vibrations, in line with and across the direction of the feed. They applied a wide range of spindle speeds and used tool paths with a confined width and depth.

Ko and his co-workers found that the height of the remnant material, called ‘cusp’, can be reduced by applying ultrasonic vibration during high-speed milling with narrow tool paths and removal depths of less than one millimeter, improving the quality of the milled surface considerably. The effect was greater when feed-directional vibration was applied to the material than when the vibration was applied across or perpendicular to the feed, which resulted in the formation of wavy burrs. By comparing and analyzing the feed and cross-feed directional effects using advanced simulations, more accurate recommendations for surface quality improvement could be made. The team also showed that the level of surface roughness is dependent on a combination of factors including feed rate and tool profile, in addition to vibration and tool speed.

“We want to devise a new design that can enhance machining quality by tuning the vibration assistance direction,” says Ko. “Furthermore, we will test novel implementations, including a multiple-cutting mechanism. There are potential commercial applications for precision engineering using our vibration scheme in the die/mold, biomedical and electronics industries.”

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

References

Ko, J. H., Shaw, K. C., Chua, H .K. & Lin, R. M. Cusp error reduction under high-speed micro/meso-scale milling with ultrasonic vibration assistance. International Journal of Precision Engineering and Manufacturing 12, 15–20 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Process Engineering:

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>