Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking water, energy and environmental sustainability: Siemens R&D projects hit key milestones

04.07.2011
Water treatment and transportation is a high consumer of energy and produces a significant amount of CO2.

Advanced treatment technologies therefore have to link water, energy and environmental sustainability through innovation. In its global R&D center based in Singapore, Siemens Water Technologies is striving to increase process and energy efficiency by both developing new, and constantly improving existing technologies.


The micro media column from Siemens removes contaminants down to the parts-per-trillion level. Photo: Siemens AG

Some of these projects have reached important milestones. At Singapore International Water Week (SIWW), the company will give an update on key projects like the energy selfsufficient biological wastewater treatment process, electrochemical desalination, a micro media column for contaminant removal and the membrane bioreactor (MBR) Changi pilot plant. “What is needed to address growing challenges like water scarcity and climate change is a holistic approach for water and wastewater treatment,” said Ruediger Knauf, Vice President of Siemens Water Technologies’ Global R&D.

“The answer lies in technology. It has to help secure water supply for the public and industry in the desired amount and quality and is expected to do so at the lowest cost and highest level of environmental sustainability.” Advanced technologies have already enabled the natural water cycle to be expedited. Further developing an integrated solution for water treatment, reclamation and reuse forms the core of Siemens’ activities. Energy self-sufficient wastewater treatment combines two technologies In the form of potential energy indigenous to the organic matter, municipal wastewater contains about ten times the energy that is needed to treat it.

Siemens is working on an innovative process that uses this organic matter to make a wastewater treatment plant self sufficient in energy. It combines aerobic biosorption and anaerobic treatment to reduce aeration demand and generate enough methane to produce the energy needed to achieve zero net energy. Since June 2010, a pilot facility has been treating about half a cubic meter of wastewater per day and, at the same time, operating in an energy-neutral manner.

Unlike conventional wastewater treatment, the bacteria are charged with the organic impurities only for a short time during the aerobic process step. This results not only in cutting energy consumption for aeration but also in producing less sludge. In the next anaerobic step, the bacteria ferment the organic matter into methane that is used for energy generation. To further develop this process on a larger scale, a pilot plant scheduled to begin operating this year in Singapore will be able to treat wastewater for approximately 2,000 residents.

Breakthrough technologies on their way to commercialization As a result of an R&D initiative that commenced in October 2008, Siemens has been working on an advanced desalination technology that reduces energy consumption by half compared to systems that are currently available. A demonstration plant has been built in Singapore to treat 50 m3 of seawater per day to drinking water quality.

The results of the pilot facility show that the new process, a combination of Electrodialysis (ED) and Continuous Electrodeionization (CEDI), not only functions in the laboratory but also on a larger scale. Siemens is now ready to set up a full-scale customer pilot in 2013 at the Tuas facility of Singapore’s national water agency PUB to proceed with the commercialization of the electrochemical desalination technology. Even closer to market launch is another R&D project that will be presented at the Ultrapure Water Asia conference, co-located at the SIWW. The micro media column (MMC) is a new product for removing selected contaminants including selenium, chromium, mercury and arsenic. It will help municipalities and customers from the power, microelectronics, pharmaceutical and metals and mining industry meet new regulations reducing contaminant levels.

As conventional ion exchange media have difficulties in achieving such low levels, Siemens developed the MMC based on a new filter media and flow design. It removes contaminants down to the parts-per-trillion level. Despite its small footprint, the MMC is a high-throughput solution. As the water flows radially through the filter media, channelling is avoided, which leads to life cycle cost savings compared to existing solutions. In field testing early this year, the MMC proved capable in removing mercury and copper. The results will be presented in Singapore before the product launch takes place in August 2011.

Improvements of existing technologies for water reuse Besides seawater desalination, water reuse technologies are being used with great success in both industries and municipalities to mitigate water stress and ensure a reliable water supply. For example, low-pressure membrane systems are especially suitable for treating wastewater for reuse. Siemens continually improves existing technologies like the membrane bioreactor (MBR). In 2010 the company commissioned a 1.0 million liter/day MBR testing facility at the Changi Water Reclamation Plant in Singapore to validate new design parameters.

The testing under real conditions has proven the presumptions of a detailed Computational Fluid Dynamics analysis that preceded the plant’s commissioning. By optimizing the aeration and the resulting macroscopic fluid flow in the membrane operating system, the energy use and the system’s overall performance could be significantly improved.

To further enhance the membrane technology, a new R&D group was established at Siemens Water Technologies’ global research center in Singapore in March 2011. The team will focus on fiber development and the next generation membrane filtration systems. By the end of 2012 the Singapore R&D team, will increase to 50 research scientists, engineers and technicians. This is another example of Siemens’ investment in research and development. The new team will further enhance the work achieved by the R&D center, established in Singapore in early 2007, with strong support from the Singapore government and PUB.

Further information about solutions for water treatment is available at: http://www.siemens.com/water

Contact USA: Ms. Allison Britt Corporate Communications Siemens Industry, Inc. Water Technologies Business Unit 2501 N. Barrington Rd. Hoffman Estates, IL 60192 USA Phone 1-847-713-8477 E-mail address allison.britt@siemens.com

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of environmentally friendly production, transportation and building technologies. With integrated automation technologies and comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. In fiscal 2010, which ended on September 30, 2010, revenue from continuing operations of the Industry Sector (excluding Osram) totaled around €30.2 billion. At the end of September 2010, Siemens Industry Sector had around 164,000 employees worldwide without consideration of Osram. Further information is available on the Internet at: www.siemens.com/industry.

The Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities comprising the business activities of Siemens VAI Metals Technologies, Water Technologies and Industrial Technologies. Activities include engineering and installation, operation and service for the entire life cycle. A wide-ranging portfolio of environmental solutions helps industrial companies to use energy, water and equipment efficiently, reduce emissions and comply with environmental guidelines. With around 29,000 employees worldwide (September 30), Siemens Industry Solutions posted sales of €6.0 billion in fiscal year 2010. http://www.siemens.com/industry-solutions

Stefanie Schiller | Siemens Industry
Further information:
http://www.siemens.com/siww

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>