Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking water, energy and environmental sustainability: Siemens R&D projects hit key milestones

04.07.2011
Water treatment and transportation is a high consumer of energy and produces a significant amount of CO2.

Advanced treatment technologies therefore have to link water, energy and environmental sustainability through innovation. In its global R&D center based in Singapore, Siemens Water Technologies is striving to increase process and energy efficiency by both developing new, and constantly improving existing technologies.


The micro media column from Siemens removes contaminants down to the parts-per-trillion level. Photo: Siemens AG

Some of these projects have reached important milestones. At Singapore International Water Week (SIWW), the company will give an update on key projects like the energy selfsufficient biological wastewater treatment process, electrochemical desalination, a micro media column for contaminant removal and the membrane bioreactor (MBR) Changi pilot plant. “What is needed to address growing challenges like water scarcity and climate change is a holistic approach for water and wastewater treatment,” said Ruediger Knauf, Vice President of Siemens Water Technologies’ Global R&D.

“The answer lies in technology. It has to help secure water supply for the public and industry in the desired amount and quality and is expected to do so at the lowest cost and highest level of environmental sustainability.” Advanced technologies have already enabled the natural water cycle to be expedited. Further developing an integrated solution for water treatment, reclamation and reuse forms the core of Siemens’ activities. Energy self-sufficient wastewater treatment combines two technologies In the form of potential energy indigenous to the organic matter, municipal wastewater contains about ten times the energy that is needed to treat it.

Siemens is working on an innovative process that uses this organic matter to make a wastewater treatment plant self sufficient in energy. It combines aerobic biosorption and anaerobic treatment to reduce aeration demand and generate enough methane to produce the energy needed to achieve zero net energy. Since June 2010, a pilot facility has been treating about half a cubic meter of wastewater per day and, at the same time, operating in an energy-neutral manner.

Unlike conventional wastewater treatment, the bacteria are charged with the organic impurities only for a short time during the aerobic process step. This results not only in cutting energy consumption for aeration but also in producing less sludge. In the next anaerobic step, the bacteria ferment the organic matter into methane that is used for energy generation. To further develop this process on a larger scale, a pilot plant scheduled to begin operating this year in Singapore will be able to treat wastewater for approximately 2,000 residents.

Breakthrough technologies on their way to commercialization As a result of an R&D initiative that commenced in October 2008, Siemens has been working on an advanced desalination technology that reduces energy consumption by half compared to systems that are currently available. A demonstration plant has been built in Singapore to treat 50 m3 of seawater per day to drinking water quality.

The results of the pilot facility show that the new process, a combination of Electrodialysis (ED) and Continuous Electrodeionization (CEDI), not only functions in the laboratory but also on a larger scale. Siemens is now ready to set up a full-scale customer pilot in 2013 at the Tuas facility of Singapore’s national water agency PUB to proceed with the commercialization of the electrochemical desalination technology. Even closer to market launch is another R&D project that will be presented at the Ultrapure Water Asia conference, co-located at the SIWW. The micro media column (MMC) is a new product for removing selected contaminants including selenium, chromium, mercury and arsenic. It will help municipalities and customers from the power, microelectronics, pharmaceutical and metals and mining industry meet new regulations reducing contaminant levels.

As conventional ion exchange media have difficulties in achieving such low levels, Siemens developed the MMC based on a new filter media and flow design. It removes contaminants down to the parts-per-trillion level. Despite its small footprint, the MMC is a high-throughput solution. As the water flows radially through the filter media, channelling is avoided, which leads to life cycle cost savings compared to existing solutions. In field testing early this year, the MMC proved capable in removing mercury and copper. The results will be presented in Singapore before the product launch takes place in August 2011.

Improvements of existing technologies for water reuse Besides seawater desalination, water reuse technologies are being used with great success in both industries and municipalities to mitigate water stress and ensure a reliable water supply. For example, low-pressure membrane systems are especially suitable for treating wastewater for reuse. Siemens continually improves existing technologies like the membrane bioreactor (MBR). In 2010 the company commissioned a 1.0 million liter/day MBR testing facility at the Changi Water Reclamation Plant in Singapore to validate new design parameters.

The testing under real conditions has proven the presumptions of a detailed Computational Fluid Dynamics analysis that preceded the plant’s commissioning. By optimizing the aeration and the resulting macroscopic fluid flow in the membrane operating system, the energy use and the system’s overall performance could be significantly improved.

To further enhance the membrane technology, a new R&D group was established at Siemens Water Technologies’ global research center in Singapore in March 2011. The team will focus on fiber development and the next generation membrane filtration systems. By the end of 2012 the Singapore R&D team, will increase to 50 research scientists, engineers and technicians. This is another example of Siemens’ investment in research and development. The new team will further enhance the work achieved by the R&D center, established in Singapore in early 2007, with strong support from the Singapore government and PUB.

Further information about solutions for water treatment is available at: http://www.siemens.com/water

Contact USA: Ms. Allison Britt Corporate Communications Siemens Industry, Inc. Water Technologies Business Unit 2501 N. Barrington Rd. Hoffman Estates, IL 60192 USA Phone 1-847-713-8477 E-mail address allison.britt@siemens.com

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of environmentally friendly production, transportation and building technologies. With integrated automation technologies and comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. In fiscal 2010, which ended on September 30, 2010, revenue from continuing operations of the Industry Sector (excluding Osram) totaled around €30.2 billion. At the end of September 2010, Siemens Industry Sector had around 164,000 employees worldwide without consideration of Osram. Further information is available on the Internet at: www.siemens.com/industry.

The Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities comprising the business activities of Siemens VAI Metals Technologies, Water Technologies and Industrial Technologies. Activities include engineering and installation, operation and service for the entire life cycle. A wide-ranging portfolio of environmental solutions helps industrial companies to use energy, water and equipment efficiently, reduce emissions and comply with environmental guidelines. With around 29,000 employees worldwide (September 30), Siemens Industry Solutions posted sales of €6.0 billion in fiscal year 2010. http://www.siemens.com/industry-solutions

Stefanie Schiller | Siemens Industry
Further information:
http://www.siemens.com/siww

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>