Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers in a flash

23.08.2010
Producing isolated laser pulses in just attoseconds made easier using a two-color laser field

Ultrafast time-resolved laser spectroscopy is a technique that uses the interaction of light with matter to study the properties of physical systems. Researchers can generate laser pulses lasting mere attoseconds—quintillionths of seconds—to examine the nuclear dynamics in different states of matter, including single atoms.

Generating isolated attosecond pulses reliably is challenging. Commonly, physicists use few-cycle laser pulses with a near infrared wavelength as a pump to temporarily ionize specific atoms, typically those of a noble gas. When an electron re-collides with a nucleus from which it has been pulled away, it emits light with a much higher frequency than the one in the pump laser. This so-called ‘high-order harmonic generation’ usually in the extreme ultraviolet region can create an attosecond pulse.

Eiji Takahashi and his colleagues at the RIKEN Advanced Science Institute in Wako, in collaboration with scientists at the Vienna University of Technology, Austria, have now reported a way to easily produce isolated attosecond pulses, which surpasses all previous attempts for simplicity and reliability1.

A number of research groups have recently generated isolated laser pulses as short as 80 attoseconds. However, their energy is still too low be used in practice, since the energy of the pump pulses is limited. High pump energy would induce high gas ionization such that the atoms hit by the pump pulses would be highly ionized, but this would prevent the whole process of re-collision. In addition, to guarantee reliable production of isolated attosecond pulses, the phase of the carrier envelope wave connected to the pump pulse needs to be stabilized, which requires an expensive and complicated process.

To circumvent these limitations, Takahashi and colleagues used a two-color laser field: a pump laser with an 800-nanometer wavelength superimposed on one of 1,300 nanometers. The combination of the two lasers allowed the generation of a higher harmonic spectrum without needing to stabilize the carrier envelope phase.

Crucially, they used conventional lasers that are readily available and inexpensive. “This novel two-color laser scheme also enables one to markedly suppress the detrimental gas target ionization,” notes Takahashi. “Consequently, not only the most appropriate phase-matching technique, but also an energy-scaling scheme, can be applied to produce intense isolated attosecond pulses.”

Takahashi also says that this method has the potential to produce isolated, attosecond, extreme-ultraviolet x-ray pulses with microjoule energy from a table-top system. He believes this would open the door to the realm of strongly nonlinear attosecond science.

The corresponding author for this highlight is based at the Extreme Photonics Research Group, RIKEN Advanced Science Institute.

1. Takahashi, E.J., Lan, P., Mücke, O.D., Nabekawa, Y. & Midorikawa, K. Infrared two-color multicycle laser-field synthesis for generating an intense attosecond pulse. Physical Review Letters 104, 233901 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6367
http://www.researchsea.com

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>