Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser materials processing: Tracking the contour

The Fraunhofer Institute for Laser Technology ILT has developed a process monitoring system that can precisely measure the position and speed of the laser beam processing point on the surface.

This enables deviations from the set contour and speed to be minimized and the energy input to be stabilized.

In recent years the use of modern solid-state lasers has brought about a distinct increase in operational speed in laser materials processing. Whether with scanners or fixed optics, high speeds – as far as possible in various axes at the same time – have almost become the norm. But although the movement of the optic is precisely calculated, the position of the processing point can deviate from the planned contour. Help is at hand, thanks to a process monitoring system which precisely tracks the relative movement of workpiece and optic. It enables acceleration-related deviations from the set contour and speed to be measured exactly and the numerical control system to be adjusted accordingly.

Research scientists at the Fraunhofer ILT in Aachen have developed a camera-based system which analyzes the movements of the workpiece through the optical axis of the laser beam before or during processing. It does not matter whether a fixed or scanner optic is used – in both cases the system measures the movement of the processing point on the workpiece and documents deviations from the set contour during machine setup or operation.

The process monitoring system uses image sequence frequencies of up to 10 kHz. In various applications, contours have been measured with a processing speed of up to 10 m/min (fixed optic) and up to 15 m/s (scanner optic). The deviation from a reference system was less than 3 cm/min. At present the measured data are evaluated separately. Whilst the same technology does permit real-time measurement (there are no technical barriers to this), the accuracy class of this has not yet been completely specified.

The special design of the system means that it can be used in a very wide range of applications, including laser cutting and welding, soldering, drilling, ablation, microjoining, SLM and hardening. The various modes of operation are interesting both for system integrators and for end users. On the one hand, the system can track the processing point during machine setup, enabling the planned contour to be adjusted.

On the other hand, the system permits process control during actual operation. This means not only can the processing contour be adjusted, the laser output can also be controlled to ensure an even energy input at different laser spot speeds. That is a critical factor in particular when processing thin materials. As a result, existing processes can be optimized and new processes are made possible.

In addition to application tests, the specialists at the Fraunhofer ILT provide full support for integration of the process monitoring system in their customers’ systems. This includes calibration of the system and adaptation to the customer’s optical equipment.

The system will be presented at LASER World of Photonics in Munich from May 23 to 26, 2011, on the joint Fraunhofer booth (Hall C2, Booth 330).

Contacts at Fraunhofer ILT
Our experts will be pleased to assist if you have any questions:
Dipl.-Ing. Christoph Franz
Sensor Technology
Phone +49 241 8906-621
Dipl.-Ing. Peter Abels
Sensor Technology
Phone +49 241 8906-428
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>