Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser materials processing: Tracking the contour

12.05.2011
The Fraunhofer Institute for Laser Technology ILT has developed a process monitoring system that can precisely measure the position and speed of the laser beam processing point on the surface.

This enables deviations from the set contour and speed to be minimized and the energy input to be stabilized.

In recent years the use of modern solid-state lasers has brought about a distinct increase in operational speed in laser materials processing. Whether with scanners or fixed optics, high speeds – as far as possible in various axes at the same time – have almost become the norm. But although the movement of the optic is precisely calculated, the position of the processing point can deviate from the planned contour. Help is at hand, thanks to a process monitoring system which precisely tracks the relative movement of workpiece and optic. It enables acceleration-related deviations from the set contour and speed to be measured exactly and the numerical control system to be adjusted accordingly.

Research scientists at the Fraunhofer ILT in Aachen have developed a camera-based system which analyzes the movements of the workpiece through the optical axis of the laser beam before or during processing. It does not matter whether a fixed or scanner optic is used – in both cases the system measures the movement of the processing point on the workpiece and documents deviations from the set contour during machine setup or operation.

The process monitoring system uses image sequence frequencies of up to 10 kHz. In various applications, contours have been measured with a processing speed of up to 10 m/min (fixed optic) and up to 15 m/s (scanner optic). The deviation from a reference system was less than 3 cm/min. At present the measured data are evaluated separately. Whilst the same technology does permit real-time measurement (there are no technical barriers to this), the accuracy class of this has not yet been completely specified.

The special design of the system means that it can be used in a very wide range of applications, including laser cutting and welding, soldering, drilling, ablation, microjoining, SLM and hardening. The various modes of operation are interesting both for system integrators and for end users. On the one hand, the system can track the processing point during machine setup, enabling the planned contour to be adjusted.

On the other hand, the system permits process control during actual operation. This means not only can the processing contour be adjusted, the laser output can also be controlled to ensure an even energy input at different laser spot speeds. That is a critical factor in particular when processing thin materials. As a result, existing processes can be optimized and new processes are made possible.

In addition to application tests, the specialists at the Fraunhofer ILT provide full support for integration of the process monitoring system in their customers’ systems. This includes calibration of the system and adaptation to the customer’s optical equipment.

The system will be presented at LASER World of Photonics in Munich from May 23 to 26, 2011, on the joint Fraunhofer booth (Hall C2, Booth 330).

Contacts at Fraunhofer ILT
Our experts will be pleased to assist if you have any questions:
Dipl.-Ing. Christoph Franz
Sensor Technology
Phone +49 241 8906-621
christoph.franz@ilt.fraunhofer.de
Dipl.-Ing. Peter Abels
Sensor Technology
Phone +49 241 8906-428
peter.abels@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>