Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-assisted joining of plastics and metal

15.10.2008
Plastic is increasingly being used as a construction material, which poses the problem of joining dissimilar material classes. Plastic-metal hybrid components could be manufactured using a variety of techniques. The LIFTEC® laser-assisted joining process developed at the Fraunhofer Institute for Laser Technology ILT offers an efficient solution.

The newly developed LIFTEC® joining process (patent pending) works by heating a component, or a part of it, by laser radiation which passes through the plastic joining partner. The component is pressed onto the plastic part under mechanical pressure, then heated, and finally pushed into the plastic by further mechanical pressure.

Provided that a suitable component geometry has been selected, a solid, positive bond is formed after cooling. It is essential to the process that the component should have a higher melting point than the plastic joining partner. Suitable materials include metals, ceramics and temperature-resistant plastics.

Another approach is being investigated in the context of the Cluster of Excellence "Integrative Production Technology for High-Wage Countries" at RWTH Aachen University. In this approach, researchers are examining several irradiation methods, materials, beam sources and pre-treatment methods. A first series of tests is being carried out to determine the influence of structural density on the joining process. This is being done by producing surface structures with dotted, lined and checkered patterns in stainless steel samples using Nd:YAG laser light.

Subsequently, the structured samples are bonded to the transparent plastic samples by diode laser light in a con-tour or quasi-simultaneous joining process. The resulting bonds are very strong and generally very promising.

Contacts at the Fraunhofer ILT
If you have any questions regarding this topic, please feel free to contact our experts:
Fraunhofer-Institut für Lasertechnik ILT
Aachen, Germany
Dr. Arnold Gillner
Head of the micro technology department
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Dipl.-Ing. Jens Holtkamp
Micro technology department
Phone +49 241 8906-273
jens.holtkamp@ilt.fraunhofer.de
Dipl.-Ing. Andreas Roesner
Micro technology department
Phone +49 241 8906-158
andreas.roesner@ilt.fraunhofer.de
For any other questions or finding special experts please contact:
Dipl.-Phys. Axel Bauer
Head of marketing and communications
Fraunhofer-Institut für Lasertechnik ILT
Aachen, Germany
Phone: ++49/241/8906-194
Fax: ++49/241/8906-121
axel.bauer@ilt.fraunhofer.de

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>