Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-assisted joining of plastics and metal

15.10.2008
Plastic is increasingly being used as a construction material, which poses the problem of joining dissimilar material classes. Plastic-metal hybrid components could be manufactured using a variety of techniques. The LIFTEC® laser-assisted joining process developed at the Fraunhofer Institute for Laser Technology ILT offers an efficient solution.

The newly developed LIFTEC® joining process (patent pending) works by heating a component, or a part of it, by laser radiation which passes through the plastic joining partner. The component is pressed onto the plastic part under mechanical pressure, then heated, and finally pushed into the plastic by further mechanical pressure.

Provided that a suitable component geometry has been selected, a solid, positive bond is formed after cooling. It is essential to the process that the component should have a higher melting point than the plastic joining partner. Suitable materials include metals, ceramics and temperature-resistant plastics.

Another approach is being investigated in the context of the Cluster of Excellence "Integrative Production Technology for High-Wage Countries" at RWTH Aachen University. In this approach, researchers are examining several irradiation methods, materials, beam sources and pre-treatment methods. A first series of tests is being carried out to determine the influence of structural density on the joining process. This is being done by producing surface structures with dotted, lined and checkered patterns in stainless steel samples using Nd:YAG laser light.

Subsequently, the structured samples are bonded to the transparent plastic samples by diode laser light in a con-tour or quasi-simultaneous joining process. The resulting bonds are very strong and generally very promising.

Contacts at the Fraunhofer ILT
If you have any questions regarding this topic, please feel free to contact our experts:
Fraunhofer-Institut für Lasertechnik ILT
Aachen, Germany
Dr. Arnold Gillner
Head of the micro technology department
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Dipl.-Ing. Jens Holtkamp
Micro technology department
Phone +49 241 8906-273
jens.holtkamp@ilt.fraunhofer.de
Dipl.-Ing. Andreas Roesner
Micro technology department
Phone +49 241 8906-158
andreas.roesner@ilt.fraunhofer.de
For any other questions or finding special experts please contact:
Dipl.-Phys. Axel Bauer
Head of marketing and communications
Fraunhofer-Institut für Lasertechnik ILT
Aachen, Germany
Phone: ++49/241/8906-194
Fax: ++49/241/8906-121
axel.bauer@ilt.fraunhofer.de

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>