Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


KOMET: radially polarized laser beam enables maximum precision and efficiency in laser materials processing

The annual output of solar cells fabricated with silicon ribbons in Germany amounts to approx. 50 million wafers, and this figure is expected to rise to 500 million wafers by 2012.

This trend will require manufacturers to expand their production capacity while maintaining superlative levels of quality and economic efficiency. Companies from the solar cell technology business and laser specialists involved in fine cutting have joined forces to tackle this challenge in the cooperation project KOMET. One of the aims of the project is to use a newly developed laser concept to increase the throughput of the silicon cells by up to 50% while significantly improving the quality of the products.

February 18, 2009, saw the start of the collaborative project KOMET, which is funded by the German federal ministry of economics and technology (BMWi). The name gives a clue as to what the project aims to develop: a "Compact solid-state laser for efficient material ablation with radially polarized light". Participants in the project include the research institutes Laser-Laboratorium Göttingen LLG, the Fraunhofer Institute for Laser Technology ILT and the Chair of Informatics at the University of Erlangen-Nürnberg, as well as seven industry partners. Together, they are planning to develop a modular solid-state laser for precision cutting and drilling by 2012 that features significantly improved beam quality and an increase in cutting efficiency of up to 50%.

When it comes to the quality and efficiency of laser materials processing, a key role is played by the polarization state of the radiation beam, in other words the direction of oscillation of its electric field. This dictates various factors including its focusability. Up to now, fine cutting of brittle-hard materials such as silicon has made use of a laser with a circularly polarized beam. In contrast to a linearly polarized beam, the quality of the cut is not dependent on the cutting direction: a laser beam with circular polarization can achieve results in industrial applications that represent the state of the art.

Greater cost-effectiveness thanks to higher coupling efficiency.

This is where the KOMET project comes into its own: in order to further enhance the coupling efficiency and focusability of the laser beam independent of cutting direction, the partners in the project are now planning to employ radially polarized light. A radially polarized laser beam demonstrates up to 30% better absorption than a circularly polarized beam, thereby reducing coupling losses. Radially symmetric polarization leads to significant improvements in cutting quality.

The example of solar technology clearly reveals some of the concrete benefits that can be obtained using this innovative concept. 200 micrometer-thin silicon cells (silicon ribbon) are currently manufactured with a kerf width of around 10 micrometers. By using a laser with a radially polarized beam, it is possible to significantly optimize this cutting process in terms of both its efficiency and quality: the cutting process can be accelerated by up to 50%, thereby achieving a corresponding boost in production capacity. Moreover, the cutting precision obtained is substantially higher. Under optimum conditions, the focusing point of the radially polarized beam is up to 60% smaller than that of conventional lasers. This allows the usable surface area of the material being processed to be maximized. The new system also holds great interest for laser dicing of silicon wafers.

The first step is being taken by the overall coordinator of the project, LLG, who will develop an external polarizer to generate radially polarized light. A series of preliminary tests are then set to be carried out by the researchers from Göttingen in collaboration with the University of Erlangen-Nürnberg to examine and optimize the polarizer's functionality, subsequent to which the polarizer will be made available to the Fraunhofer ILT for experimental trials. In Aachen, the intention is then to test the prototype under conditions similar to those of normal production using the equipment available on site. "In collaboration with our project partners from industry, we will be using the radially polarized laser to carry out experimental cutting of workpieces. Thanks to our expertise and equipment in the field of measuring technology we can then certify the components, thereby laying the bridge between research and the end user," explains Dr. Jens Schüttler, the KOMET project leader at the Fraunhofer ILT. In a further step, the consortium is planning to make a powerful solid-state laser available for industrial use, which will not require any external devices to produce radial polarization. At a wavelength of 1064 nm, the laser will be designed with an output power of a few 100 mW (master oscillator) or of up to 30 W (power amplifier), respectively. Medical engineering is a further field of application for this innovative laser concept, in particular the precise machining of stents.

The following industry partners are involved in the KOMET project: InnoLas GmbH, WACKER SCHOTT Solar GmbH, ADMEDES Schuessler GmbH, Advanced Laser Separation International N.V., LAS-CAD GmbH, FEE GmbH and Schumacher Elektromechanik GmbH.

Your contacts at the Fraunhofer ILT
Our experts are on hand to answer your questions:
Dr. Jens Schüttler
Department of Modeling and Simulation
Phone +49 241 8906-680
Dipl.-Ing. Andreas Dohrn
Department of Microstructuring
Phone +49 241 8906-202
Prof. Dr. Wolfgang Schulz
Head of the Department of Modeling and Simulation
Phone +49 241 8906-204
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:

Further reports about: ILT Komet LLG Modeling laser beam laser system polarized light silicon wafer

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>