Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

KOMET: radially polarized laser beam enables maximum precision and efficiency in laser materials processing

29.07.2009
The annual output of solar cells fabricated with silicon ribbons in Germany amounts to approx. 50 million wafers, and this figure is expected to rise to 500 million wafers by 2012.

This trend will require manufacturers to expand their production capacity while maintaining superlative levels of quality and economic efficiency. Companies from the solar cell technology business and laser specialists involved in fine cutting have joined forces to tackle this challenge in the cooperation project KOMET. One of the aims of the project is to use a newly developed laser concept to increase the throughput of the silicon cells by up to 50% while significantly improving the quality of the products.

February 18, 2009, saw the start of the collaborative project KOMET, which is funded by the German federal ministry of economics and technology (BMWi). The name gives a clue as to what the project aims to develop: a "Compact solid-state laser for efficient material ablation with radially polarized light". Participants in the project include the research institutes Laser-Laboratorium Göttingen LLG, the Fraunhofer Institute for Laser Technology ILT and the Chair of Informatics at the University of Erlangen-Nürnberg, as well as seven industry partners. Together, they are planning to develop a modular solid-state laser for precision cutting and drilling by 2012 that features significantly improved beam quality and an increase in cutting efficiency of up to 50%.

When it comes to the quality and efficiency of laser materials processing, a key role is played by the polarization state of the radiation beam, in other words the direction of oscillation of its electric field. This dictates various factors including its focusability. Up to now, fine cutting of brittle-hard materials such as silicon has made use of a laser with a circularly polarized beam. In contrast to a linearly polarized beam, the quality of the cut is not dependent on the cutting direction: a laser beam with circular polarization can achieve results in industrial applications that represent the state of the art.

Greater cost-effectiveness thanks to higher coupling efficiency.

This is where the KOMET project comes into its own: in order to further enhance the coupling efficiency and focusability of the laser beam independent of cutting direction, the partners in the project are now planning to employ radially polarized light. A radially polarized laser beam demonstrates up to 30% better absorption than a circularly polarized beam, thereby reducing coupling losses. Radially symmetric polarization leads to significant improvements in cutting quality.

The example of solar technology clearly reveals some of the concrete benefits that can be obtained using this innovative concept. 200 micrometer-thin silicon cells (silicon ribbon) are currently manufactured with a kerf width of around 10 micrometers. By using a laser with a radially polarized beam, it is possible to significantly optimize this cutting process in terms of both its efficiency and quality: the cutting process can be accelerated by up to 50%, thereby achieving a corresponding boost in production capacity. Moreover, the cutting precision obtained is substantially higher. Under optimum conditions, the focusing point of the radially polarized beam is up to 60% smaller than that of conventional lasers. This allows the usable surface area of the material being processed to be maximized. The new system also holds great interest for laser dicing of silicon wafers.

The first step is being taken by the overall coordinator of the project, LLG, who will develop an external polarizer to generate radially polarized light. A series of preliminary tests are then set to be carried out by the researchers from Göttingen in collaboration with the University of Erlangen-Nürnberg to examine and optimize the polarizer's functionality, subsequent to which the polarizer will be made available to the Fraunhofer ILT for experimental trials. In Aachen, the intention is then to test the prototype under conditions similar to those of normal production using the equipment available on site. "In collaboration with our project partners from industry, we will be using the radially polarized laser to carry out experimental cutting of workpieces. Thanks to our expertise and equipment in the field of measuring technology we can then certify the components, thereby laying the bridge between research and the end user," explains Dr. Jens Schüttler, the KOMET project leader at the Fraunhofer ILT. In a further step, the consortium is planning to make a powerful solid-state laser available for industrial use, which will not require any external devices to produce radial polarization. At a wavelength of 1064 nm, the laser will be designed with an output power of a few 100 mW (master oscillator) or of up to 30 W (power amplifier), respectively. Medical engineering is a further field of application for this innovative laser concept, in particular the precise machining of stents.

The following industry partners are involved in the KOMET project: InnoLas GmbH, WACKER SCHOTT Solar GmbH, ADMEDES Schuessler GmbH, Advanced Laser Separation International N.V., LAS-CAD GmbH, FEE GmbH and Schumacher Elektromechanik GmbH.

Your contacts at the Fraunhofer ILT
Our experts are on hand to answer your questions:
Dr. Jens Schüttler
Department of Modeling and Simulation
Phone +49 241 8906-680
jens.schuettler@ilt.fraunhofer.de
Dipl.-Ing. Andreas Dohrn
Department of Microstructuring
Phone +49 241 8906-202
andreas.dohrn@ilt.fraunhofer.de
Prof. Dr. Wolfgang Schulz
Head of the Department of Modeling and Simulation
Phone +49 241 8906-204
wolfgang.schulz@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de
http://www.ilt.fraunhofer.de/eng/100031.html

Further reports about: ILT Komet LLG Modeling laser beam laser system polarized light silicon wafer

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>