Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joining ultra-high-strength chromium steels reliably with laser technology

02.10.2014

Incredibly light and holds up in collisions – but often impossible to weld: this characterizes ultra-high-strength chromium steels that, thanks to their high carbon content, could not be reliably bonded together by laser until now. At this year’s EuroBLECH, the International Sheet Metal Working Technology Exhibition, the Fraunhofer Institute for Laser Technology ILT will use a B pillar to show how laser welding can be reliably used on press-hardened, martensitic chromium steels.

Within the scope of the research project SECOMAL, the Fraunhofer Institute for Laser Technology ILT in Aachen has determined process parameters and process windows for the laser welding of three ultra-high-strength chromium steels: pure ferritic, ferritic-martensitic, and pure martensitic with carbon content ranging from 0.02 to 0.46 mass percent. Hardened, they achieve a tensile strength of up to two gigapascals with fracture strain of 10 percent. Their inherent resistance to corrosion makes these steels ideal for vehicle manufacturing.


Microstructure of weld in 1.4034.

Picture Source: Fraunhofer ILT, Aachen, Germany.


At EuroBLECH 2014, Fraunhofer ILT will use a test specimen for B-pillars to demonstrate that laser welding can be used reliably on press-hardened, martensitic chromium steels.

Picture Source: Fraunhofer ILT, Aachen, Germany.

The materials with the lowest and the highest carbon content – ferritic and martensitic chromium steels, respectively – can now be easily joined, even when the materials are hardened. “Only the martensitic stainless grade 1.4021, with an average carbon content of 0.21 percent poses dfficulties,” says Dipl.-Ing. Martin Dahmen, a researcher of the Fraunhofer ILT.

According to the textbook, preheating martensitic steel is recommended before joining and then tempering it – that is, heating the welding zone locally – to improve the toughness in the heat-affected zone. Hardened sheets can be tempered up to 450°C without causing any loss of quality. In principle, all types of laser beams are suitable for welding materials, but since the laser should produce parallel seam edges, Dahmen recommends using only the so-called brilliant beam sources and CO2 lasers.

But how does the laser compare to metal active gas (MAG) welding? “With judicious heat treatment, the hardened chromium steel can be joined without difficulty, with the exception of 1.4021,” says the ILT researcher. “On the other hand, MAG welding is problematic because of the resulting high-energy input in the joining areas, even with appropriate heat treatment.”

What successful laser welding looks like in practice will be showcased by the Fraunhofer ILT on its test specimen of a B-pillar of ultra high-strength steel welded to a vehicle rocker panel. “This proves that welding ultra high-strength materials by laser offers a viable alternative to manganese boron steels,” says Dahmen. Visitors to EuroBLECH 2014 can visit the demonstrator exhibit and learn more about laser welding chromium steels and other Fraunhofer ILT projects at the Fraunhofer Joint Stand in Hall 11, Booth C05.

SECOMAL joint research project

The focus of this research project is investigating how laser and MAG welding can be used for fusion welding ultra-high-strength stainless steels with a martensitic structure. SECOMAL is a collaborative research project of the Fraunhofer ILT and the Paderborn University Laboratory of Materials and Joining Technology (LWF), the Fraunhofer Institute for Structural Durability and System Reliability LBF, and the steelmaker Outokumpu Nirosta. It is funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), the German Federation of Industrial Research Associations Otto von Guericke e.V. (AiF), and the Research Association for Steel Application (FOSTA).

Contact

Dipl.-Ing. Martin Dahmen
Macro Joining and Cutting Group
Telephone +49 241 8906-307
martin.dahmen@ilt.fraunhofer.de

Dr. Dirk Petring
Leader Macro Joining and Cutting Group
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>