Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joining ultra-high-strength chromium steels reliably with laser technology

02.10.2014

Incredibly light and holds up in collisions – but often impossible to weld: this characterizes ultra-high-strength chromium steels that, thanks to their high carbon content, could not be reliably bonded together by laser until now. At this year’s EuroBLECH, the International Sheet Metal Working Technology Exhibition, the Fraunhofer Institute for Laser Technology ILT will use a B pillar to show how laser welding can be reliably used on press-hardened, martensitic chromium steels.

Within the scope of the research project SECOMAL, the Fraunhofer Institute for Laser Technology ILT in Aachen has determined process parameters and process windows for the laser welding of three ultra-high-strength chromium steels: pure ferritic, ferritic-martensitic, and pure martensitic with carbon content ranging from 0.02 to 0.46 mass percent. Hardened, they achieve a tensile strength of up to two gigapascals with fracture strain of 10 percent. Their inherent resistance to corrosion makes these steels ideal for vehicle manufacturing.


Microstructure of weld in 1.4034.

Picture Source: Fraunhofer ILT, Aachen, Germany.


At EuroBLECH 2014, Fraunhofer ILT will use a test specimen for B-pillars to demonstrate that laser welding can be used reliably on press-hardened, martensitic chromium steels.

Picture Source: Fraunhofer ILT, Aachen, Germany.

The materials with the lowest and the highest carbon content – ferritic and martensitic chromium steels, respectively – can now be easily joined, even when the materials are hardened. “Only the martensitic stainless grade 1.4021, with an average carbon content of 0.21 percent poses dfficulties,” says Dipl.-Ing. Martin Dahmen, a researcher of the Fraunhofer ILT.

According to the textbook, preheating martensitic steel is recommended before joining and then tempering it – that is, heating the welding zone locally – to improve the toughness in the heat-affected zone. Hardened sheets can be tempered up to 450°C without causing any loss of quality. In principle, all types of laser beams are suitable for welding materials, but since the laser should produce parallel seam edges, Dahmen recommends using only the so-called brilliant beam sources and CO2 lasers.

But how does the laser compare to metal active gas (MAG) welding? “With judicious heat treatment, the hardened chromium steel can be joined without difficulty, with the exception of 1.4021,” says the ILT researcher. “On the other hand, MAG welding is problematic because of the resulting high-energy input in the joining areas, even with appropriate heat treatment.”

What successful laser welding looks like in practice will be showcased by the Fraunhofer ILT on its test specimen of a B-pillar of ultra high-strength steel welded to a vehicle rocker panel. “This proves that welding ultra high-strength materials by laser offers a viable alternative to manganese boron steels,” says Dahmen. Visitors to EuroBLECH 2014 can visit the demonstrator exhibit and learn more about laser welding chromium steels and other Fraunhofer ILT projects at the Fraunhofer Joint Stand in Hall 11, Booth C05.

SECOMAL joint research project

The focus of this research project is investigating how laser and MAG welding can be used for fusion welding ultra-high-strength stainless steels with a martensitic structure. SECOMAL is a collaborative research project of the Fraunhofer ILT and the Paderborn University Laboratory of Materials and Joining Technology (LWF), the Fraunhofer Institute for Structural Durability and System Reliability LBF, and the steelmaker Outokumpu Nirosta. It is funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), the German Federation of Industrial Research Associations Otto von Guericke e.V. (AiF), and the Research Association for Steel Application (FOSTA).

Contact

Dipl.-Ing. Martin Dahmen
Macro Joining and Cutting Group
Telephone +49 241 8906-307
martin.dahmen@ilt.fraunhofer.de

Dr. Dirk Petring
Leader Macro Joining and Cutting Group
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>